These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24703663)

  • 21. Size and charge characterisation of a submicrometre oil-in-water emulsion using resistive pulse sensing with tunable pores.
    Somerville JA; Willmott GR; Eldridge J; Griffiths M; McGrath KM
    J Colloid Interface Sci; 2013 Mar; 394():243-51. PubMed ID: 23347996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Counting bacteria on a microfluidic chip.
    Song Y; Zhang H; Chon CH; Chen S; Pan X; Li D
    Anal Chim Acta; 2010 Nov; 681(1-2):82-6. PubMed ID: 21035606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Critical Evaluation of Microfluidic Resistive Pulse Sensing for Quantification and Sizing of Nanometer- and Micrometer-Sized Particles in Biopharmaceutical Products.
    Grabarek AD; Weinbuch D; Jiskoot W; Hawe A
    J Pharm Sci; 2019 Jan; 108(1):563-573. PubMed ID: 30176253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Induced-charge electroosmotic flow around dielectric particles in uniform electric field.
    Zhang F; Li D
    J Colloid Interface Sci; 2013 Nov; 410():102-10. PubMed ID: 24034219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanopore Sensing in Aqueous Two-Phase System: Simultaneous Enhancement of Signal and Translocation Time via Conformal Coating.
    Lee SJ; Kang JY; Choi W; Kwak R
    Small; 2017 Jan; 13(3):. PubMed ID: 27753235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polystyrene particles reveal pore substructure as they translocate.
    Pevarnik M; Healy K; Toimil-Molares ME; Morrison A; Létant SE; Siwy ZS
    ACS Nano; 2012 Aug; 6(8):7295-302. PubMed ID: 22793157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Co-ordinated detection of microparticles using tunable resistive pulse sensing and fluorescence spectroscopy.
    Hauer P; Le Ru EC; Willmott GR
    Biomicrofluidics; 2015 Jan; 9(1):014110. PubMed ID: 25713692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pulse Size Distributions in Tunable Resistive Pulse Sensing.
    Weatherall E; Hauer P; Vogel R; Willmott GR
    Anal Chem; 2016 Sep; 88(17):8648-56. PubMed ID: 27469286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of the Electrostatic Classification Method to Size 0.1 μm SRM Particles-A Feasibility Study.
    Kinney PD; Pui DY; Mulliolland GW; Bryner NP
    J Res Natl Inst Stand Technol; 1991; 96(2):147-176. PubMed ID: 28184107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hybrid resistive pulse-optical detection platform for microfluidic experiments.
    Hinkle P; Westerhof TM; Qiu Y; Mallin DJ; Wallace ML; Nelson EL; Taborek P; Siwy ZS
    Sci Rep; 2017 Aug; 7(1):10173. PubMed ID: 28860641
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing.
    Blundell EL; Vogel R; Platt M
    Langmuir; 2016 Feb; 32(4):1082-90. PubMed ID: 26757237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of net surface charge on particle sizing and material recognition by using phase Doppler anemometry.
    Zhou J; Xie L
    Appl Opt; 2011 Jan; 50(3):379-86. PubMed ID: 21263738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methods for counting particles in microfluidic applications.
    Zhang H; Chon CH; Pan X; Li D
    Microfluid Nanofluidics; 2009; 7(6):739. PubMed ID: 32214956
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor.
    Vogel R; Willmott G; Kozak D; Roberts GS; Anderson W; Groenewegen L; Glossop B; Barnett A; Turner A; Trau M
    Anal Chem; 2011 May; 83(9):3499-506. PubMed ID: 21434639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing charges on solid-liquid interfaces with the resistive-pulse technique.
    Qiu Y; Siwy Z
    Nanoscale; 2017 Sep; 9(36):13527-13537. PubMed ID: 28871289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Design and Characterization of Multifunctional Aptamer Nanopore Sensors.
    Mayne L; Lin CY; Christie SDR; Siwy ZS; Platt M
    ACS Nano; 2018 May; 12(5):4844-4852. PubMed ID: 29718658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single particle analysis using fluidic, optical and electrophoretic force balance in a microfluidic system.
    Lu Q; Terray A; Collins GE; Hart SJ
    Lab Chip; 2012 Mar; 12(6):1128-34. PubMed ID: 22315144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Analytical Differential Resistance Pulse System Relying on a Time Shift Signal Analysis-Applications in Coulter Counting.
    Birkin PR; Linfield S; Denuault G; Jones R; Youngs JJ; Wain E
    ACS Sens; 2019 Aug; 4(8):2190-2195. PubMed ID: 31290312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Charge transport across high surface area metal/diamond nanostructured composites.
    Plana D; Humphrey JJ; Bradley KA; Celorrio V; Fermín DJ
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2985-90. PubMed ID: 23510528
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alternating current electrokinetic properties of gold-coated microspheres.
    García-Sánchez P; Ren Y; Arcenegui JJ; Morgan H; Ramos A
    Langmuir; 2012 Oct; 28(39):13861-70. PubMed ID: 22931290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.