BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24703959)

  • 1. Induced catabolic bio-electrohydrolysis of complex food waste by regulating external resistance for enhancing acidogenic biohydrogen production.
    Chandrasekhar K; Venkata Mohan S
    Bioresour Technol; 2014 Aug; 165():372-82. PubMed ID: 24703959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioaugmentation of potent acidogenic isolates: a strategy for enhancing biohydrogen production at elevated organic load.
    Goud RK; Sarkar O; Chiranjeevi P; Venkata Mohan S
    Bioresour Technol; 2014 Aug; 165():223-32. PubMed ID: 24751375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic approach to assess biohydrogen potential of anaerobic sludge and soil rhizobia as biocatalysts: Influence of crucial factors affecting acidogenic fermentation.
    Nikhil GN; Venkata Mohan S; Swamy YV
    Bioresour Technol; 2014 Aug; 165():323-31. PubMed ID: 24721687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia.
    Reddy MV; Mohan SV
    Bioresour Technol; 2012 Jan; 103(1):313-21. PubMed ID: 22055090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems.
    Han W; Yan Y; Shi Y; Gu J; Tang J; Zhao H
    Sci Rep; 2016 Dec; 6():38395. PubMed ID: 27910937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two stage anaerobic baffled reactors for bio-hydrogen production from municipal food waste.
    Tawfik A; Salem A; El-Qelish M
    Bioresour Technol; 2011 Sep; 102(18):8723-6. PubMed ID: 21498075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-hydrolysis and bio-hydrogen production from food waste by thermophilic and hyperthermophilic anaerobic process.
    Algapani DE; Qiao W; Su M; di Pumpo F; Wandera SM; Adani F; Dong R
    Bioresour Technol; 2016 Sep; 216():768-77. PubMed ID: 27295255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolytic and acidogenic fermentation potential of food waste with source segregated feces-without-urine as co-substrate.
    Rajagopal R; Ahamed A; Wang JY
    Bioresour Technol; 2014 Sep; 167():564-8. PubMed ID: 25022801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dehydrogenase activity in association with poised potential during biohydrogen production in single chamber microbial electrolysis cell.
    Venkata Mohan S; Lenin Babu M
    Bioresour Technol; 2011 Sep; 102(18):8457-65. PubMed ID: 21392968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance.
    Kim DH; Kim SH; Kim HW; Kim MS; Shin HS
    Bioresour Technol; 2011 Sep; 102(18):8501-6. PubMed ID: 21571523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closed circuitry operation influence on microbial electrofermentation: Proton/electron effluxes on electro-fuels productivity.
    Nikhil GN; Venkata Subhash G; Yeruva DK; Venkata Mohan S
    Bioresour Technol; 2015 Nov; 195():37-45. PubMed ID: 26189780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane.
    Sarkar O; Venkata Mohan S
    Bioresour Technol; 2017 Oct; 242():68-76. PubMed ID: 28583405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a novel enzymatic pretreatment using crude hydrolytic extracellular enzyme solution to microalgal biomass for dark fermentative hydrogen production.
    Yun YM; Kim DH; Oh YK; Shin HS; Jung KW
    Bioresour Technol; 2014 May; 159():365-72. PubMed ID: 24662313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation.
    Chandrasekhar K; Amulya K; Mohan SV
    Waste Manag; 2015 Nov; 45():57-65. PubMed ID: 26117418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen.
    Dahiya S; Sarkar O; Swamy YV; Venkata Mohan S
    Bioresour Technol; 2015 Apr; 182():103-113. PubMed ID: 25682230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a novel three-stage fermentation system converting food waste to hydrogen and methane.
    Kim DH; Kim MS
    Bioresour Technol; 2013 Jan; 127():267-74. PubMed ID: 23131651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-stage fermentation process for high-value biohythane production with the treatment of distillery spent-wash.
    Pasupuleti SB; Venkata Mohan S
    Bioresour Technol; 2015; 189():177-185. PubMed ID: 25889805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. States and challenges for high-value biohythane production from waste biomass by dark fermentation technology.
    Liu Z; Zhang C; Lu Y; Wu X; Wang L; Wang L; Han B; Xing XH
    Bioresour Technol; 2013 May; 135():292-303. PubMed ID: 23186673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological hydrogen production by anaerobic digestion of food waste and sewage sludge treated using various pretreatment technologies.
    Kim S; Choi K; Kim JO; Chung J
    Biodegradation; 2013 Nov; 24(6):753-64. PubMed ID: 23389715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity.
    Mohan SV; Chandrasekhar K
    Bioresour Technol; 2011 Jul; 102(14):7077-85. PubMed ID: 21570830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.