BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

543 related articles for article (PubMed ID: 24704082)

  • 41. In-Ceram failure behavior and core-veneer interface quality as influenced by residual infiltration glass.
    Carrier DD; Kelly JR
    J Prosthodont; 1995 Dec; 4(4):237-42. PubMed ID: 8601181
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of surface roughness on mechanical strength of resin composite versus glass ceramic materials.
    Lohbauer U; Müller FA; Petschelt A
    Dent Mater; 2008 Feb; 24(2):250-6. PubMed ID: 17628659
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of endodontic access preparation on the failure load of lithium disilicate glass-ceramic restorations.
    Qeblawi D; Hill T; Chlosta K
    J Prosthet Dent; 2011 Nov; 106(5):328-36. PubMed ID: 22024183
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of core:dentin thickness ratio on the bi-axial flexure strength and fracture mode and origin of bilayered dental ceramic composites.
    Fleming GJ; El-Lakwah SF; Harris JJ; Marquis PM
    Dent Mater; 2005 Feb; 21(2):164-71. PubMed ID: 15681015
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of interface characterization and adhesion of glass ceramics to commercially pure titanium and gold alloy after thermal- and mechanical-loading.
    Vásquez VZ; Ozcan M; Kimpara ET
    Dent Mater; 2009 Feb; 25(2):221-31. PubMed ID: 18718654
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bond strength of the porcelain repair system to all-ceramic copings and porcelain.
    Lee SJ; Cheong CW; Wright RF; Chang BM
    J Prosthodont; 2014 Feb; 23(2):112-6. PubMed ID: 23725343
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Bi-axial flexure strength and fracture mode of alumina glass-infiltrated core/veneer ceramic composites].
    Cui J; Liu XH; Ma L; Jia L; Chao YL
    Shanghai Kou Qiang Yi Xue; 2010 Apr; 19(2):192-5. PubMed ID: 20485986
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of surface treatments on adhesion of low-fusing porcelain to titanium as determined by strain energy release rate.
    Elsaka SE; Swain MV
    Dent Mater; 2011 Dec; 27(12):1213-20. PubMed ID: 21975306
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of simulated clinical grinding and subsequent heat treatment on microcrack healing of a lithium disilicate ceramic.
    Hung CY; Lai YL; Hsieh YL; Chi LY; Lee SY
    Int J Prosthodont; 2008; 21(6):496-8. PubMed ID: 19149064
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Finite element analysis to compare stress distribution of gold alloy, lithium-disilicate reinforced glass ceramic and zirconia based fixed partial denture.
    Zheng Z; Lin J; Shinya A; Matinlinna JP; Botelho MG; Shinya A
    J Investig Clin Dent; 2012 Nov; 3(4):291-7. PubMed ID: 22977016
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.
    Wang G; Zhang S; Bian C; Kong H
    J Mech Behav Biomed Mater; 2014 Nov; 39():119-28. PubMed ID: 25123435
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of the veneering porcelain and different surface treatments on the biaxial flexural strength of a heat-pressed ceramic.
    Isgrò G; Pallav P; van der Zel JM; Feilzer AJ
    J Prosthet Dent; 2003 Nov; 90(5):465-73. PubMed ID: 14586311
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of veneer application on fracture behavior of lithium-disilicate-based ceramic crowns.
    Zhao K; Pan Y; Guess PC; Zhang XP; Swain MV
    Dent Mater; 2012 Jun; 28(6):653-60. PubMed ID: 22456006
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of surface roughness on flexural strength of veneer ceramics.
    Fischer H; Schäfer M; Marx R
    J Dent Res; 2003 Dec; 82(12):972-5. PubMed ID: 14630897
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of etching time and resin bond on the flexural strength of IPS e.max Press glass ceramic.
    Xiaoping L; Dongfeng R; Silikas N
    Dent Mater; 2014 Dec; 30(12):e330-6. PubMed ID: 25189110
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of experimental coating to improve the zirconia-veneering ceramic bond strength.
    Matani JD; Kheur M; Jambhekar SS; Bhargava P; Londhe A
    J Prosthodont; 2014 Dec; 23(8):626-33. PubMed ID: 24975232
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro study of fracture load and fracture pattern of ceramic crowns: a finite element and fractography analysis.
    Campos RE; Soares CJ; Quagliatto PS; Soares PV; de Oliveira OB; Santos-Filho PC; Salazar-Marocho SM
    J Prosthodont; 2011 Aug; 20(6):447-55. PubMed ID: 21843228
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fracture Strength of Zirconia and Alumina Ceramic Crowns Supported by Implants.
    Traini T; Sorrentino R; Gherlone E; Perfetti F; Bollero P; Zarone F
    J Oral Implantol; 2015 Jul; 41 Spec No():352-9. PubMed ID: 24779915
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of different surface treatments on bond strength between leucite reinforced feldspathic ceramic and composite resin.
    Fabianelli A; Pollington S; Papacchini F; Goracci C; Cantoro A; Ferrari M; van Noort R
    J Dent; 2010 Jan; 38(1):39-43. PubMed ID: 19744537
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fracture strength of minimally prepared all-ceramic CEREC crowns after simulating 5 years of service.
    Skouridou N; Pollington S; Rosentritt M; Tsitrou E
    Dent Mater; 2013 Jun; 29(6):e70-7. PubMed ID: 23618556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.