These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

696 related articles for article (PubMed ID: 24704142)

  • 1. Deconvolution of magnetic acoustic change complex (mACC).
    Bardy F; McMahon CM; Yau SH; Johnson BW
    Clin Neurophysiol; 2014 Nov; 125(11):2220-2231. PubMed ID: 24704142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deconvolution of overlapping cortical auditory evoked potentials recorded using short stimulus onset-asynchrony ranges.
    Bardy F; Van Dun B; Dillon H; McMahon CM
    Clin Neurophysiol; 2014 Apr; 125(4):814-826. PubMed ID: 24269614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Least-squares (LS) deconvolution of a series of overlapping cortical auditory evoked potentials: a simulation and experimental study.
    Bardy F; Van Dun B; Dillon H; Cowan R
    J Neural Eng; 2014 Aug; 11(4):046016. PubMed ID: 24963952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Varying effect of noise on sound onset and acoustic change evoked auditory cortical N1 responses evoked by a vowel-vowel stimulus.
    Yaralı M
    Int J Psychophysiol; 2020 Jun; 152():36-43. PubMed ID: 32302643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Informational Masking Effects on Neural Encoding of Stimulus Onset and Acoustic Change.
    Niemczak CE; Vander Werff KR
    Ear Hear; 2019; 40(1):156-167. PubMed ID: 29782442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory temporal processing in healthy aging: a magnetoencephalographic study.
    Sörös P; Teismann IK; Manemann E; Lütkenhöner B
    BMC Neurosci; 2009 Apr; 10():34. PubMed ID: 19351410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of the human auditory cortex to acoustic degradation of speech and non-speech sounds.
    Miettinen I; Tiitinen H; Alku P; May PJ
    BMC Neurosci; 2010 Feb; 11():24. PubMed ID: 20175890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responsiveness of the human auditory cortex to degraded speech sounds: reduction of amplitude resolution vs. additive noise.
    Miettinen I; Alku P; Salminen N; May PJ; Tiitinen H
    Brain Res; 2011 Jan; 1367():298-309. PubMed ID: 20969833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sound envelope encoding in the auditory cortex revealed by neuromagnetic responses in the theta to gamma frequency bands.
    Miyazaki T; Thompson J; Fujioka T; Ross B
    Brain Res; 2013 Apr; 1506():64-75. PubMed ID: 23399682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Location changes enhance hemispheric asymmetry of magnetic fields evoked by lateralized sounds in humans.
    Kaiser J; Lutzenberger W
    Neurosci Lett; 2001 Nov; 314(1-2):17-20. PubMed ID: 11698136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of various articulatory features of speech on cortical event-related potentials and behavioral measures of speech-sound processing.
    Korczak PA; Stapells DR
    Ear Hear; 2010 Aug; 31(4):491-504. PubMed ID: 20453651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory cortex responses to the transition from monophonic to pseudo-stereo sound.
    Ross B; Herdman AT; Wollbrink A; Pantev C
    Neurol Clin Neurophysiol; 2004 Nov; 2004():18. PubMed ID: 16012692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural generators of the frequency-following response elicited to stimuli of low and high frequency: A magnetoencephalographic (MEG) study.
    Gorina-Careta N; Kurkela JLO; Hämäläinen J; Astikainen P; Escera C
    Neuroimage; 2021 May; 231():117866. PubMed ID: 33592244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal window of integration estimated by omission in bone-conducted ultrasound.
    Okayasu T; Nishimura T; Uratani Y; Yamashita A; Nakagawa S; Yamanaka T; Hosoi H; Kitahara T
    Neurosci Lett; 2019 Mar; 696():1-6. PubMed ID: 30476566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory detection of motion velocity in humans: a magnetoencephalographic study.
    Xiang J; Daniel SJ; Ishii R; Holowka S; Harrison RV; Chuang S
    Brain Topogr; 2005; 17(3):139-49. PubMed ID: 15974473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of cortical auditory evoked potentials to evaluate neural encoding of speech sounds in adults.
    Agung K; Purdy SC; McMahon CM; Newall P
    J Am Acad Audiol; 2006 Sep; 17(8):559-72. PubMed ID: 16999251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of healthy aging on auditory processing in humans as indexed by transient brain responses.
    Matilainen LE; Talvitie SS; Pekkonen E; Alku P; May PJ; Tiitinen H
    Clin Neurophysiol; 2010 Jun; 121(6):902-11. PubMed ID: 20359943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical differentiation of speech and nonspeech sounds at 100 ms: implications for dyslexia.
    Parviainen T; Helenius P; Salmelin R
    Cereb Cortex; 2005 Jul; 15(7):1054-63. PubMed ID: 15563727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel type of auditory responses: temporal dynamics of 40-Hz steady-state responses induced by changes in sound localization.
    Ross B
    J Neurophysiol; 2008 Sep; 100(3):1265-77. PubMed ID: 18632891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.