BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2470416)

  • 21. Building Synthetic Transmembrane Peptide Pores.
    Mahendran KR
    Methods Mol Biol; 2021; 2186():19-32. PubMed ID: 32918727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Outer surface modification of synthetic multifunctional pores.
    Talukdar P; Sakai N; Sordé N; Gerard D; Cardona VM; Matile S
    Bioorg Med Chem; 2004 Mar; 12(6):1325-36. PubMed ID: 15018904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular structure and mechanisms of action of cyclic and linear ion transport antibiotics.
    Duax WL; Griffin JF; Langs DA; Smith GD; Grochulski P; Pletnev V; Ivanov V
    Biopolymers; 1996; 40(1):141-55. PubMed ID: 8541445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane permeabilization of a mammalian neuroendocrine cell type (PC12) by the channel-forming peptides zervamicin, alamethicin, and gramicidin.
    Weidema AF; Kropacheva TN; Raap J; Ypey DL
    Chem Biodivers; 2007 Jun; 4(6):1347-59. PubMed ID: 17589868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large unselective pore in lipid bilayer membrane formed by positively charged peptides containing a sequence of gramicidin A.
    Antonenko YN; Stoilova TB; Kovalchuk SI; Egorova NS; Pashkovskaya AA; Sobko AA; Kotova EA; Sychev SV; Surovoy AY
    FEBS Lett; 2005 Sep; 579(23):5247-52. PubMed ID: 16165129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Collective dynamics in lipid membranes containing transmembrane peptides.
    Kelley EG; Butler PD; Nagao M
    Soft Matter; 2021 Jun; 17(23):5671-5681. PubMed ID: 33942045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers.
    Oliver AE; Deamer DW
    Biophys J; 1994 May; 66(5):1364-79. PubMed ID: 7520289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energetics of pore formation induced by membrane active peptides.
    Lee MT; Chen FY; Huang HW
    Biochemistry; 2004 Mar; 43(12):3590-9. PubMed ID: 15035629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation studies of alamethicin-bilayer interactions.
    Biggin PC; Breed J; Son HS; Sansom MS
    Biophys J; 1997 Feb; 72(2 Pt 1):627-36. PubMed ID: 9017192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuum solvent model calculations of alamethicin-membrane interactions: thermodynamic aspects.
    Kessel A; Cafiso DS; Ben-Tal N
    Biophys J; 2000 Feb; 78(2):571-83. PubMed ID: 10653772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gramicidin D conformation, dynamics and membrane ion transport.
    Burkhart BM; Gassman RM; Langs DA; Pangborn WA; Duax WL; Pletnev V
    Biopolymers; 1999; 51(2):129-44. PubMed ID: 10397797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy.
    Bechinger B
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):157-83. PubMed ID: 10590307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion channels formed by chemical analogs of gramicidin A.
    Bamberg E; Apell HJ; Alpes H; Gross E; Morell JL; Harbaugh JF; Janko K; Läuger P
    Fed Proc; 1978 Oct; 37(12):2633-8. PubMed ID: 81149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature.
    Antonov VF; Petrov VV; Molnar AA; Predvoditelev DA; Ivanov AS
    Nature; 1980 Feb; 283(5747):585-6. PubMed ID: 6153458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of a 19-residue peptide with alamethicin-like activity.
    Gisin BF; Kobayashi S; Hall JE
    Proc Natl Acad Sci U S A; 1977 Jan; 74(1):115-9. PubMed ID: 264663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane structure of voltage-gated channel forming peptides by site-directed spin-labeling.
    Barranger-Mathys M; Cafiso DS
    Biochemistry; 1996 Jan; 35(2):498-505. PubMed ID: 8555220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heating-enabled formation of droplet interface bilayers using Escherichia coli total lipid extract.
    Taylor GJ; Sarles SA
    Langmuir; 2015; 31(1):325-37. PubMed ID: 25514167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How do amphiphiles form ion-conducting channels in membranes? Lessons from linear oligoesters.
    Fyles TM
    Acc Chem Res; 2013 Dec; 46(12):2847-55. PubMed ID: 23586980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Implicit solvent model estimates of the stability of model structures of the alamethicin channel.
    Kessel A; Tieleman DP; Ben-Tal N
    Eur Biophys J; 2004 Feb; 33(1):16-28. PubMed ID: 13680212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ferrocenoyl derivatives of alamethicin: redox-sensitive ion channels.
    Schmitt JD; Sansom MS; Kerr ID; Lunt GG; Eisenthal R
    Biochemistry; 1997 Feb; 36(5):1115-22. PubMed ID: 9033402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.