BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2470416)

  • 41. Structural polymorphism of gramicidin A channels: ion conductivity and spectral studies.
    Sychev SV; Sukhanov SV; Barsukov LI; Ivanov VT
    J Pept Sci; 1996; 2(3):141-56. PubMed ID: 9231323
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural architecture of an outer membrane channel as determined by electron crystallography.
    Jap BK; Walian PJ; Gehring K
    Nature; 1991 Mar; 350(6314):167-70. PubMed ID: 1848682
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Helical kink and channel behaviour: a comparative study with the peptaibols alamethicin, trichotoxin and antiamoebin.
    Duclohier H
    Eur Biophys J; 2004 May; 33(3):169-74. PubMed ID: 15014907
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interaction of the 14-residue peptaibols, harzianins HC, with lipid bilayers: permeability modifications and conductance properties.
    Lucaciu M; Rebuffat S; Goulard C; Duclohier H; Molle G; Bodo B
    Biochim Biophys Acta; 1997 Jan; 1323(1):85-96. PubMed ID: 9030215
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities.
    Si W; Xin P; Li ZT; Hou JL
    Acc Chem Res; 2015 Jun; 48(6):1612-9. PubMed ID: 26017272
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synporins--synthetic proteins that emulate the pore structure of biological ionic channels.
    Montal M; Montal MS; Tomich JM
    Proc Natl Acad Sci U S A; 1990 Sep; 87(18):6929-33. PubMed ID: 1698285
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels.
    Ashrafuzzaman M; Andersen OS; McElhaney RN
    Biochim Biophys Acta; 2008 Dec; 1778(12):2814-22. PubMed ID: 18809374
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The ion-channel activity of longibrachins LGA I and LGB II: effects of pro-2/Ala and gln-18/Glu substitutions on the alamethicin voltage-gated membrane channels.
    Cosette P; Rebuffat S; Bodo B; Molle G
    Biochim Biophys Acta; 1999 Nov; 1461(1):113-22. PubMed ID: 10556493
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Asymmetrical ion-channel model inferred from two-dimensional crystallization of a peptide antibiotic.
    Ionov R; El-Abed A; Angelova A; Goldmann M; Peretti P
    Biophys J; 2000 Jun; 78(6):3026-35. PubMed ID: 10827981
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Artificial beta-barrels.
    Sakai N; Mareda J; Matile S
    Acc Chem Res; 2008 Oct; 41(10):1354-65. PubMed ID: 18590283
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alamethicin pyromellitate: an ion-activated channel-forming peptide.
    Woolley GA; Epand RM; Kerr ID; Sansom MS; Wallace BA
    Biochemistry; 1994 Jun; 33(22):6850-8. PubMed ID: 7515685
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular basis of mechanotransduction in living cells.
    Hamill OP; Martinac B
    Physiol Rev; 2001 Apr; 81(2):685-740. PubMed ID: 11274342
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Asymmetry of orientation and voltage gating of the Acidovorax delafieldii porin Omp34 in lipid bilayers.
    Brunen M; Engelhardt H
    Eur J Biochem; 1993 Feb; 212(1):129-35. PubMed ID: 7680309
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effects of bilayer thickness and tension on gramicidin single-channel lifetime.
    Elliott JR; Needham D; Dilger JP; Haydon DA
    Biochim Biophys Acta; 1983 Oct; 735(1):95-103. PubMed ID: 6194820
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Imaging of voltage-gated alamethicin pores in a reconstituted bilayer lipid membrane via scanning electrochemical microscopy.
    Wilburn JP; Wright DW; Cliffel DE
    Analyst; 2006 Feb; 131(2):311-6. PubMed ID: 16440098
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Determination of the structure of a membrane-incorporated ion channel. Solid-state nuclear magnetic resonance studies of gramicidin A.
    Smith R; Thomas DE; Separovic F; Atkins AR; Cornell BA
    Biophys J; 1989 Aug; 56(2):307-14. PubMed ID: 2476189
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Engineering stabilized ion channels: covalent dimers of alamethicin.
    You S; Peng S; Lien L; Breed J; Sansom MS; Woolley GA
    Biochemistry; 1996 May; 35(20):6225-32. PubMed ID: 8639562
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular dynamics of alamethicin transmembrane channels from open-channel current noise analysis.
    Mak DO; Webb WW
    Biophys J; 1995 Dec; 69(6):2337-49. PubMed ID: 8599640
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stability of an ion channel in lipid bilayers: implicit solvent model calculations with gramicidin.
    Bransburg-Zabary S; Kessel A; Gutman M; Ben-Tal N
    Biochemistry; 2002 Jun; 41(22):6946-54. PubMed ID: 12033927
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modulation of gramicidin channel structure and function by the aliphatic "spacer" residues 10, 12, and 14 between the tryptophans.
    Jude AR; Greathouse DV; Koeppe RE; Providence LL; Andersen OS
    Biochemistry; 1999 Jan; 38(3):1030-9. PubMed ID: 9893999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.