These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24704202)

  • 1. The characterization and comparison of amyloidogenic segments and non-amyloidogenic segments shed light on amyloid formation.
    Chen S; Gao S; Cheng D; Huang J
    Biochem Biophys Res Commun; 2014 May; 447(2):255-62. PubMed ID: 24704202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism of β-sheet self-organization at water-hydrophobic interfaces.
    Nikolic A; Baud S; Rauscher S; Pomès R
    Proteins; 2011 Jan; 79(1):1-22. PubMed ID: 20938982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence.
    Garbuzynskiy SO; Lobanov MY; Galzitskaya OV
    Bioinformatics; 2010 Feb; 26(3):326-32. PubMed ID: 20019059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cyclic peptide inhibitor of apoC-II peptide fibril formation: mechanistic insight from NMR and molecular dynamics analysis.
    Griffin MD; Yeung L; Hung A; Todorova N; Mok YF; Karas JA; Gooley PR; Yarovsky I; Howlett GJ
    J Mol Biol; 2012 Mar; 416(5):642-55. PubMed ID: 22244853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative packing modes leading to amyloid polymorphism in five fragments studied with molecular dynamics.
    Berhanu WM; Masunov AE
    Biopolymers; 2012; 98(2):131-44. PubMed ID: 22020870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amyloidogenic sequences in native protein structures.
    Tzotzos S; Doig AJ
    Protein Sci; 2010 Feb; 19(2):327-48. PubMed ID: 20027621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Appendant structure plays an important role in amyloidogenic cystatin dimerization prior to domain swapping.
    Yu Y; Liu X; He J; Zhang M; Li H; Wei D; Song Y
    J Biomol Struct Dyn; 2012; 30(1):102-12. PubMed ID: 22571436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective interception of gelsolin amyloidogenic stretch results in conformationally distinct aggregates with reduced toxicity.
    Arya P; Srivastava A; Vasaikar SV; Mukherjee G; Mishra P; Kundu B
    ACS Chem Neurosci; 2014 Oct; 5(10):982-92. PubMed ID: 25118567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and dynamic properties of a new amyloidogenic chicken cystatin mutant I108T.
    Yu Y; Wang Y; He J; Liu Y; Li H; Zhang H; Song Y
    J Biomol Struct Dyn; 2010 Apr; 27(5):641-9. PubMed ID: 20085381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocontrol of reversible amyloid formation with a minimal-design peptide.
    Waldauer SA; Hassan S; Paoli B; Donaldson PM; Pfister R; Hamm P; Caflisch A; Pellarin R
    J Phys Chem B; 2012 Aug; 116(30):8961-73. PubMed ID: 22724381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of introducing a short amyloidogenic sequence from the Aβ peptide at the N-terminus of 18-residue amphipathic helical peptides.
    SivakamaSundari C; Rukmani S; Nagaraj R
    J Pept Sci; 2012 Feb; 18(2):122-8. PubMed ID: 22052825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobic interaction drives surface-assisted epitaxial assembly of amyloid-like peptides.
    Kang SG; Huynh T; Xia Z; Zhang Y; Fang H; Wei G; Zhou R
    J Am Chem Soc; 2013 Feb; 135(8):3150-7. PubMed ID: 23360070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizations of distinct amyloidogenic conformations of the Abeta (1-40) and (1-42) peptides.
    Lim KH; Collver HH; Le YT; Nagchowdhuri P; Kenney JM
    Biochem Biophys Res Commun; 2007 Feb; 353(2):443-9. PubMed ID: 17184733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical balance of electrostatic and hydrophobic interactions is required for beta 2-microglobulin amyloid fibril growth and stability.
    Raman B; Chatani E; Kihara M; Ban T; Sakai M; Hasegawa K; Naiki H; Rao ChM; Goto Y
    Biochemistry; 2005 Feb; 44(4):1288-99. PubMed ID: 15667222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR characterization of hydrophobic collapses in amyloidogenic unfolded states and their implications for amyloid formation.
    Lim KH; Nagchowdhuri P; Rathinavelan T; Im W
    Biochem Biophys Res Commun; 2010 Jun; 396(4):800-5. PubMed ID: 20438713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations and free energy analyses on the dimer formation of an amyloidogenic heptapeptide from human beta2-microglobulin: implication for the protofibril structure.
    Lei H; Wu C; Wang Z; Duan Y
    J Mol Biol; 2006 Mar; 356(4):1049-63. PubMed ID: 16403526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation of amyloids in a cellular context: modelling and experiment.
    Friedman R
    Biochem J; 2011 Sep; 438(3):415-26. PubMed ID: 21867485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid.
    Lai Z; Colón W; Kelly JW
    Biochemistry; 1996 May; 35(20):6470-82. PubMed ID: 8639594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence dependence of amyloid fibril formation: insights from molecular dynamics simulations.
    López de la Paz M; de Mori GM; Serrano L; Colombo G
    J Mol Biol; 2005 Jun; 349(3):583-96. PubMed ID: 15882870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.