These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24704202)

  • 21. Replica exchange molecular dynamics simulations of amyloid peptide aggregation.
    Cecchini M; Rao F; Seeber M; Caflisch A
    J Chem Phys; 2004 Dec; 121(21):10748-56. PubMed ID: 15549960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation of amyloid aggregates from human lysozyme and its disease-associated variants using hydrostatic pressure.
    De Felice FG; Vieira MN; Meirelles MN; Morozova-Roche LA; Dobson CM; Ferreira ST
    FASEB J; 2004 Jul; 18(10):1099-101. PubMed ID: 15155566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-based design and study of non-amyloidogenic, double N-methylated IAPP amyloid core sequences as inhibitors of IAPP amyloid formation and cytotoxicity.
    Kapurniotu A; Schmauder A; Tenidis K
    J Mol Biol; 2002 Jan; 315(3):339-50. PubMed ID: 11786016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics simulations of a fibrillogenic peptide derived from apolipoprotein C-II.
    Legge FS; Treutlein H; Howlett GJ; Yarovsky I
    Biophys Chem; 2007 Nov; 130(3):102-13. PubMed ID: 17825978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of amyloid assembly by autoregulation.
    Landreh M; Johansson J; Rising A; Presto J; Jörnvall H
    Biochem J; 2012 Oct; 447(2):185-92. PubMed ID: 23013511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Covalently attached fatty acyl chains alter the aggregation behavior of an amyloidogenic peptide derived from human β(2)-microglobulin.
    Rawat A; Nagaraj R
    J Pept Sci; 2013 Dec; 19(12):770-83. PubMed ID: 24243599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binding of nascent collagen by amyloidogenic light chains and amyloid fibrillogenesis in monolayers of human fibrocytes.
    Harris DL; King E; Ramsland PA; Edmundson AB
    J Mol Recognit; 2000; 13(4):198-212. PubMed ID: 10931557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrophobic cooperativity as a mechanism for amyloid nucleation.
    Hills RD; Brooks CL
    J Mol Biol; 2007 May; 368(3):894-901. PubMed ID: 17368485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro amyloid fibril formation by synthetic peptides corresponding to the amino terminus of apoSAA isoforms from amyloid-susceptible and amyloid-resistant mice.
    Kirschner DA; Elliott-Bryant R; Szumowski KE; Gonnerman WA; Kindy MS; Sipe JD; Cathcart ES
    J Struct Biol; 1998 Dec; 124(1):88-98. PubMed ID: 9931277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Autoimmune Responses to Soluble Aggregates of Amyloidogenic Proteins Involved in Neurodegenerative Diseases: Overlapping Aggregation Prone and Autoimmunogenic regions.
    Kumar S; Thangakani AM; Nagarajan R; Singh SK; Velmurugan D; Gromiha MM
    Sci Rep; 2016 Feb; 6():22258. PubMed ID: 26924748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A toy model for predicting the rate of amyloid formation from unfolded protein.
    Hall D; Hirota N; Dobson CM
    J Mol Biol; 2005 Aug; 351(1):195-205. PubMed ID: 15993421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational Approaches to Identification of Aggregation Sites and the Mechanism of Amyloid Growth.
    Dovidchenko NV; Galzitskaya OV
    Adv Exp Med Biol; 2015; 855():213-39. PubMed ID: 26149932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of amyloid formation by glucagon-like peptides: role of basic residues in heparin-mediated aggregation.
    Jha NN; Anoop A; Ranganathan S; Mohite GM; Padinhateeri R; Maji SK
    Biochemistry; 2013 Dec; 52(49):8800-10. PubMed ID: 24236650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational preferences of non-polar amino acid residues: an additional factor in amyloid formation.
    Johansson J; Nerelius C; Willander H; Presto J
    Biochem Biophys Res Commun; 2010 Nov; 402(3):515-8. PubMed ID: 20971069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards gelsolin amyloid formation.
    Liepina I; Janmey P; Czaplewski C; Liwo A
    Biopolymers; 2004; 76(6):543-8. PubMed ID: 15538717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How do thermophilic proteins resist aggregation?
    Thangakani AM; Kumar S; Velmurugan D; Gromiha MS
    Proteins; 2012 Apr; 80(4):1003-15. PubMed ID: 22389104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elongation of ordered peptide aggregate of an amyloidogenic hexapeptide NFGAIL observed in molecular dynamics simulations with explicit solvent.
    Wu C; Lei H; Duan Y
    J Am Chem Soc; 2005 Oct; 127(39):13530-7. PubMed ID: 16190716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties.
    Tenidis K; Waldner M; Bernhagen J; Fischle W; Bergmann M; Weber M; Merkle ML; Voelter W; Brunner H; Kapurniotu A
    J Mol Biol; 2000 Jan; 295(4):1055-71. PubMed ID: 10656810
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A molecular dynamics approach to the structural characterization of amyloid aggregation.
    Cecchini M; Curcio R; Pappalardo M; Melki R; Caflisch A
    J Mol Biol; 2006 Apr; 357(4):1306-21. PubMed ID: 16483608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resolving the Atomistic Modes of Anle138b Inhibitory Action on Peptide Oligomer Formation.
    Matthes D; Gapsys V; Griesinger C; de Groot BL
    ACS Chem Neurosci; 2017 Dec; 8(12):2791-2808. PubMed ID: 28906103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.