These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2470433)

  • 1. A lipid vesicle system for probing voltage-dependent peptide-lipid interactions: application to alamethicin channel formation.
    Woolley GA; Deber CM
    Biopolymers; 1989 Jan; 28(1):267-72. PubMed ID: 2470433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation of alamethicin in phospholipid vesicles: implications for insertion models.
    Cascio M; Wallace BA
    Proteins; 1988; 4(2):89-98. PubMed ID: 3227017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-dependent conductance for alamethicin in phospholipid vesicles. A test for the mechanism of gating.
    Archer SJ; Cafiso DS
    Biophys J; 1991 Aug; 60(2):380-8. PubMed ID: 1717015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-induced formation of alamethicin pores in lecithin bilayer vesicles.
    Lau AL; Chan SI
    Biochemistry; 1976 Jun; 15(12):2551-5. PubMed ID: 938624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-driven reversible insertion into and leaving from a lipid bilayer: tuning transmembrane transport of artificial channels.
    Si W; Li ZT; Hou JL
    Angew Chem Int Ed Engl; 2014 Apr; 53(18):4578-81. PubMed ID: 24683053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-dependent interaction of the peptaibol antibiotic zervamicin II with phospholipid vesicles.
    Kropacheva TN; Raap J
    FEBS Lett; 1999 Nov; 460(3):500-4. PubMed ID: 10556525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extramembrane control of ion channel peptide assemblies, using alamethicin as an example.
    Futaki S; Noshiro D; Kiwada T; Asami K
    Acc Chem Res; 2013 Dec; 46(12):2924-33. PubMed ID: 23680081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane structure of voltage-gated channel forming peptides by site-directed spin-labeling.
    Barranger-Mathys M; Cafiso DS
    Biochemistry; 1996 Jan; 35(2):498-505. PubMed ID: 8555220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane permeabilization of a mammalian neuroendocrine cell type (PC12) by the channel-forming peptides zervamicin, alamethicin, and gramicidin.
    Weidema AF; Kropacheva TN; Raap J; Ypey DL
    Chem Biodivers; 2007 Jun; 4(6):1347-59. PubMed ID: 17589868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-dependent pore activity of the peptide alamethicin correlated with incorporation in the membrane: salt and cholesterol effects.
    Stankowski S; Schwarz UD; Schwarz G
    Biochim Biophys Acta; 1988 Jun; 941(1):11-8. PubMed ID: 2453215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between the free energy of a channel-forming voltage-gated peptide and the spontaneous curvature of bilayer lipids.
    Lewis JR; Cafiso DS
    Biochemistry; 1999 May; 38(18):5932-8. PubMed ID: 10231547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of alamethicin-induced conductance by membrane composition.
    Latorre R; Donovan JJ
    Acta Physiol Scand Suppl; 1980; 481():37-45. PubMed ID: 6254328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionophore-mediated transmembrane movement of divalent cations in small unilamellar liposomes: an evaluation of the chlortetracycline fluorescence technique and correlations with black lipid membrane studies.
    Mathew MK; Nagaraj R; Balaram P
    J Membr Biol; 1982; 65(1-2):13-7. PubMed ID: 7057457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation and peptide-lipid interactions of alamethicin incorporated in phospholipid membranes: polarized infrared and spin-label EPR spectroscopy.
    Marsh D
    Biochemistry; 2009 Feb; 48(4):729-37. PubMed ID: 19133787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferrocenoyl derivatives of alamethicin: redox-sensitive ion channels.
    Schmitt JD; Sansom MS; Kerr ID; Lunt GG; Eisenthal R
    Biochemistry; 1997 Feb; 36(5):1115-22. PubMed ID: 9033402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-dependent energetics of alamethicin monomers in the membrane.
    Mottamal M; Lazaridis T
    Biophys Chem; 2006 Jun; 122(1):50-7. PubMed ID: 16542770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An anion-selective analogue of the channel-forming peptide alamethicin.
    Starostin AV; Butan R; Borisenko V; James DA; Wenschuh H; Sansom MS; Woolley GA
    Biochemistry; 1999 May; 38(19):6144-50. PubMed ID: 10320341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The antibacterial peptide ceratotoxin A displays alamethicin-like behavior in lipid bilayers.
    Saint N; Marri L; Marchini D; Molle G
    Peptides; 2003 Nov; 24(11):1779-84. PubMed ID: 15019210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution electrophysiology on a chip: Transient dynamics of alamethicin channel formation.
    Sondermann M; George M; Fertig N; Behrends JC
    Biochim Biophys Acta; 2006 Apr; 1758(4):545-51. PubMed ID: 16696935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alamethicin: a peptide model for voltage gating and protein-membrane interactions.
    Cafiso DS
    Annu Rev Biophys Biomol Struct; 1994; 23():141-65. PubMed ID: 7522664
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.