BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 24704494)

  • 1. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit.
    Medyouf H; Mossner M; Jann JC; Nolte F; Raffel S; Herrmann C; Lier A; Eisen C; Nowak V; Zens B; Müdder K; Klein C; Obländer J; Fey S; Vogler J; Fabarius A; Riedl E; Roehl H; Kohlmann A; Staller M; Haferlach C; Müller N; John T; Platzbecker U; Metzgeroth G; Hofmann WK; Trumpp A; Nowak D
    Cell Stem Cell; 2014 Jun; 14(6):824-37. PubMed ID: 24704494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone marrow niche in the myelodysplastic syndromes.
    Cogle CR; Saki N; Khodadi E; Li J; Shahjahani M; Azizidoost S
    Leuk Res; 2015 Oct; 39(10):1020-7. PubMed ID: 26276090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality?
    Pleyer L; Valent P; Greil R
    Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27355944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coexistence of aberrant hematopoietic and stromal elements in myelodysplastic syndromes.
    Abbas S; Kini A; Srivastava VM; M MT; Nair SC; Abraham A; Mathews V; George B; Kumar S; Venkatraman A; Srivastava A
    Blood Cells Mol Dis; 2017 Jul; 66():37-46. PubMed ID: 28822917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired proliferative potential of bone marrow mesenchymal stromal cells in patients with myelodysplastic syndromes is associated with abnormal WNT signaling pathway.
    Pavlaki K; Pontikoglou CG; Demetriadou A; Batsali AK; Damianaki A; Simantirakis E; Kontakis M; Galanopoulos A; Kotsianidis I; Kastrinaki MC; Papadaki HA
    Stem Cells Dev; 2014 Jul; 23(14):1568-81. PubMed ID: 24617415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential expression of AURKA and AURKB genes in bone marrow stromal mesenchymal cells of myelodysplastic syndrome: correlation with G-banding analysis and FISH.
    Oliveira FM; Lucena-Araujo AR; Favarin Mdo C; Palma PV; Rego EM; Falcão RP; Covas DT; Fontes AM
    Exp Hematol; 2013 Feb; 41(2):198-208. PubMed ID: 23092930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells.
    Geyh S; Oz S; Cadeddu RP; Fröbel J; Brückner B; Kündgen A; Fenk R; Bruns I; Zilkens C; Hermsen D; Gattermann N; Kobbe G; Germing U; Lyko F; Haas R; Schroeder T
    Leukemia; 2013 Sep; 27(9):1841-51. PubMed ID: 23797473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Despite differential gene expression profiles pediatric MDS derived mesenchymal stromal cells display functionality in vitro.
    Calkoen FG; Vervat C; van Pel M; de Haas V; Vijfhuizen LS; Eising E; Kroes WG; 't Hoen PA; van den Heuvel-Eibrink MM; Egeler RM; van Tol MJ; Ball LM
    Stem Cell Res; 2015 Mar; 14(2):198-210. PubMed ID: 25679997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of rigosertib on the osteo-hematopoietic niche in myelodysplastic syndromes.
    Balaian E; Weidner H; Wobus M; Baschant U; Jacobi A; Mies A; Bornhäuser M; Guck J; Hofbauer LC; Rauner M; Platzbecker U
    Ann Hematol; 2019 Sep; 98(9):2063-2072. PubMed ID: 31312928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro study of biological characteristics of mesenchymal stem cells in patients with low-risk myelodysplastic syndrome.
    Zhang YZ; Zhao DD; Han XP; Jin HJ; Da WM; Yu L
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2008 Aug; 16(4):813-8. PubMed ID: 18718067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disease progression in myelodysplastic syndromes: do mesenchymal cells pave the way?
    Raaijmakers MH
    Cell Stem Cell; 2014 Jun; 14(6):695-7. PubMed ID: 24905157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and hematopoietic potential of CD45- clonal cells with very immature phenotype (CD45-CD34-CD38-Lin-) in patients with myelodysplastic syndromes.
    Ogata K; Satoh C; Tachibana M; Hyodo H; Tamura H; Dan K; Kimura T; Sonoda Y; Tsuji T
    Stem Cells; 2005 May; 23(5):619-30. PubMed ID: 15849169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bone marrow stem stromal imbalance--a key feature of disease progression in case of myelodysplastic mouse model.
    Das M; Chatterjee S; Basak P; Das P; Pereira JA; Dutta RK; Chaklader M; Chaudhuri S; Law S
    J Stem Cells; 2010; 5(2):49-64. PubMed ID: 22049615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What is the role of the microenvironment in MDS?
    Calvi LM; Li AJ; Becker MW
    Best Pract Res Clin Haematol; 2019 Dec; 32(4):101113. PubMed ID: 31779976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biology of the bone marrow microenvironment and myelodysplastic syndromes.
    Rankin EB; Narla A; Park JK; Lin S; Sakamoto KM
    Mol Genet Metab; 2015; 116(1-2):24-8. PubMed ID: 26210353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impairment of PI3K/AKT and WNT/β-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes.
    Falconi G; Fabiani E; Fianchi L; Criscuolo M; Raffaelli CS; Bellesi S; Hohaus S; Voso MT; D'Alò F; Leone G
    Exp Hematol; 2016 Jan; 44(1):75-83.e1-4. PubMed ID: 26521017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy.
    Poon Z; Dighe N; Venkatesan SS; Cheung AMS; Fan X; Bari S; Hota M; Ghosh S; Hwang WYK
    Leukemia; 2019 Jun; 33(6):1487-1500. PubMed ID: 30575819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microvesicles from Mesenchymal Stromal Cells Are Involved in HPC-Microenvironment Crosstalk in Myelodysplastic Patients.
    Muntión S; Ramos TL; Diez-Campelo M; Rosón B; Sánchez-Abarca LI; Misiewicz-Krzeminska I; Preciado S; Sarasquete ME; de Las Rivas J; González M; Sánchez-Guijo F; Del Cañizo MC
    PLoS One; 2016; 11(2):e0146722. PubMed ID: 26836120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically engineered mesenchymal stromal cells produce IL-3 and TPO to further improve human scaffold-based xenograft models.
    Carretta M; de Boer B; Jaques J; Antonelli A; Horton SJ; Yuan H; de Bruijn JD; Groen RWJ; Vellenga E; Schuringa JJ
    Exp Hematol; 2017 Jul; 51():36-46. PubMed ID: 28456746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospectively Isolated Human Bone Marrow Cell-Derived MSCs Support Primitive Human CD34-Negative Hematopoietic Stem Cells.
    Matsuoka Y; Nakatsuka R; Sumide K; Kawamura H; Takahashi M; Fujioka T; Uemura Y; Asano H; Sasaki Y; Inoue M; Ogawa H; Takahashi T; Hino M; Sonoda Y
    Stem Cells; 2015 May; 33(5):1554-65. PubMed ID: 25537923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.