These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
794 related articles for article (PubMed ID: 24704519)
1. A simple and serum-free protocol for cryopreservation of human umbilical cord as source of Wharton's jelly mesenchymal stem cells. Roy S; Arora S; Kumari P; Ta M Cryobiology; 2014 Jun; 68(3):467-72. PubMed ID: 24704519 [TBL] [Abstract][Full Text] [Related]
2. DMSO- and Serum-Free Cryopreservation of Wharton's Jelly Tissue Isolated From Human Umbilical Cord. Shivakumar SB; Bharti D; Subbarao RB; Jang SJ; Park JS; Ullah I; Park JK; Byun JH; Park BW; Rho GJ J Cell Biochem; 2016 Oct; 117(10):2397-412. PubMed ID: 27038129 [TBL] [Abstract][Full Text] [Related]
3. Freezing of Fresh Wharton's Jelly From Human Umbilical Cords Yields High Post-Thaw Mesenchymal Stem Cell Numbers for Cell-Based Therapies. Fong CY; Subramanian A; Biswas A; Bongso A J Cell Biochem; 2016 Apr; 117(4):815-27. PubMed ID: 26365815 [TBL] [Abstract][Full Text] [Related]
5. Comparison of human mesenchymal stem cells isolated by explant culture method from entire umbilical cord and Wharton's jelly matrix. Hendijani F; Sadeghi-Aliabadi H; Haghjooy Javanmard S Cell Tissue Bank; 2014 Dec; 15(4):555-65. PubMed ID: 24532125 [TBL] [Abstract][Full Text] [Related]
6. Pluripotent gene expression in mesenchymal stem cells from human umbilical cord Wharton's jelly and their differentiation potential to neural-like cells. Tantrawatpan C; Manochantr S; Kheolamai P; U-Pratya Y; Supokawej A; Issaragrisil S J Med Assoc Thai; 2013 Sep; 96(9):1208-17. PubMed ID: 24163998 [TBL] [Abstract][Full Text] [Related]
7. High yield recovery of equine mesenchymal stem cells from umbilical cord matrix/Wharton's jelly using a semi-automated process. Nazari-Shafti TZ; Bruno IG; Martinez RF; Coleman ME; Alt EU; McClure SR Methods Mol Biol; 2015; 1235():131-46. PubMed ID: 25388392 [TBL] [Abstract][Full Text] [Related]
8. [Biological characteristics of wharton's jelly derived mesenchymal stem cells after cryopreservation]. Shen JL; Gong LZ; Cen J; Liu Y; Wang LX; Yin WJ; Zhao DF; Ma WN; Huang YZ Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2013 Feb; 21(1):181-7. PubMed ID: 23484716 [TBL] [Abstract][Full Text] [Related]
10. Defined three-dimensional culture conditions mediate efficient induction of definitive endoderm lineage from human umbilical cord Wharton's jelly mesenchymal stem cells. Al Madhoun A; Ali H; AlKandari S; Atizado VL; Akhter N; Al-Mulla F; Atari M Stem Cell Res Ther; 2016 Nov; 7(1):165. PubMed ID: 27852316 [TBL] [Abstract][Full Text] [Related]
11. Stage-specific embryonic antigen 4 in Wharton's jelly-derived mesenchymal stem cells is not a marker for proliferation and multipotency. He H; Nagamura-Inoue T; Tsunoda H; Yuzawa M; Yamamoto Y; Yorozu P; Agata H; Tojo A Tissue Eng Part A; 2014 Apr; 20(7-8):1314-24. PubMed ID: 24279891 [TBL] [Abstract][Full Text] [Related]
12. Isolation and expansion of mesenchymal stromal/stem cells from umbilical cord under chemically defined conditions. Badraiq H; Devito L; Ilic D Methods Mol Biol; 2015; 1283():65-71. PubMed ID: 25150721 [TBL] [Abstract][Full Text] [Related]
14. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells. Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235 [TBL] [Abstract][Full Text] [Related]
15. Differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells into endometrial cells. Shi Q; Gao J; Jiang Y; Sun B; Lu W; Su M; Xu Y; Yang X; Zhang Y Stem Cell Res Ther; 2017 Nov; 8(1):246. PubMed ID: 29096715 [TBL] [Abstract][Full Text] [Related]
16. Umbilical cord tissue cryopreservation: a short review. Arutyunyan I; Fatkhudinov T; Sukhikh G Stem Cell Res Ther; 2018 Sep; 9(1):236. PubMed ID: 30219095 [TBL] [Abstract][Full Text] [Related]
17. A xeno-free culture method that enhances Wharton's jelly mesenchymal stromal cell culture efficiency over traditional animal serum-supplemented cultures. Julavijitphong S; Wichitwiengrat S; Tirawanchai N; Ruangvutilert P; Vantanasiri C; Phermthai T Cytotherapy; 2014 May; 16(5):683-91. PubMed ID: 24119645 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of non-muscle myosin II leads to G0/G1 arrest of Wharton's jelly-derived mesenchymal stromal cells. Sharma T; Kumari P; Pincha N; Mutukula N; Saha S; Jana SS; Ta M Cytotherapy; 2014 May; 16(5):640-52. PubMed ID: 24210786 [TBL] [Abstract][Full Text] [Related]
19. Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Watson N; Divers R; Kedar R; Mehindru A; Mehindru A; Borlongan MC; Borlongan CV Cytotherapy; 2015 Jan; 17(1):18-24. PubMed ID: 25442786 [TBL] [Abstract][Full Text] [Related]
20. Mesenchymal stem cells derived from Wharton's jelly: comparative phenotype analysis between tissue and in vitro expansion. Margossian T; Reppel L; Makdissy N; Stoltz JF; Bensoussan D; Huselstein C Biomed Mater Eng; 2012; 22(4):243-54. PubMed ID: 22785368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]