BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24704647)

  • 1. Monte Carlo simulation for correlation analysis of average glandular dose by breast thickness and glandular ratio in breast tissue.
    Kim ST; Cho JK
    Technol Health Care; 2014; 22(3):345-50. PubMed ID: 24704647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation doses in volume-of-interest breast computed tomography--A Monte Carlo simulation study.
    Lai CJ; Zhong Y; Yi Y; Wang T; Shaw CC
    Med Phys; 2015 Jun; 42(6):3063-75. PubMed ID: 26127058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system.
    Rodrigues L; Magalhaes LA; Braz D
    Radiat Prot Dosimetry; 2015 Dec; 167(4):576-83. PubMed ID: 25480841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo generated conversion factors for the estimation of average glandular dose in contact and magnification mammography.
    Koutalonis M; Delis H; Spyrou G; Costaridou L; Tzanakos G; Panayiotakis G
    Phys Med Biol; 2006 Nov; 51(21):5539-48. PubMed ID: 17047268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dedicated breast CT: radiation dose and image quality evaluation.
    Boone JM; Nelson TR; Lindfors KK; Seibert JA
    Radiology; 2001 Dec; 221(3):657-67. PubMed ID: 11719660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-energy contrast-enhanced digital mammography: Glandular dose estimation using a Monte Carlo code and voxel phantom.
    Tzamicha E; Yakoumakis E; Tsalafoutas IA; Dimitriadis A; Georgiou E; Tsapaki V; Chalazonitis A
    Phys Med; 2015 Nov; 31(7):785-91. PubMed ID: 25900891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Average glandular dose conversion coefficients for segmented breast voxel models.
    Zankl M; Fill U; Hoeschen C; Panzer W; Regulla D
    Radiat Prot Dosimetry; 2005; 114(1-3):410-4. PubMed ID: 15933148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating energy deposition in glandular tissues for mammography using multiscale Monte Carlo simulations.
    Oliver PAK; Thomson RM
    Med Phys; 2019 Mar; 46(3):1426-1436. PubMed ID: 30657190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Average glandular dose in digital mammography and breast tomosynthesis.
    Olgar T; Kahn T; Gosch D
    Rofo; 2012 Oct; 184(10):911-8. PubMed ID: 22711250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-energy contrast-enhanced digital mammography: patient radiation dose estimation using a Monte Carlo code.
    Yakoumakis E; Tzamicha E; Dimitriadis A; Georgiou E; Tsapaki V; Chalazonitis A
    Radiat Prot Dosimetry; 2015 Jul; 165(1-4):369-72. PubMed ID: 25836682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technique factors and their relationship to radiation dose in pendant geometry breast CT.
    Boone JM; Kwan AL; Seibert JA; Shah N; Lindfors KK; Nelson TR
    Med Phys; 2005 Dec; 32(12):3767-76. PubMed ID: 16475776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normalized average glandular dose in magnification mammography.
    Liu B; Goodsitt M; Chan HP
    Radiology; 1995 Oct; 197(1):27-32. PubMed ID: 7568836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of scatter-to-primary ratio, grid performance and normalized average glandular dose in mammography by Monte Carlo simulation including interference and energy broadening effects.
    Cunha DM; Tomal A; Poletti ME
    Phys Med Biol; 2010 Aug; 55(15):4335-59. PubMed ID: 20647608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulation of average glandular dose and an investigation of influencing factors.
    Nigapruke K; Puwanich P; Phaisangittisakul N; Youngdee W
    J Radiat Res; 2010; 51(4):441-8. PubMed ID: 20523013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo calculation of conversion coefficients for dose estimation in mammography based on a 3D detailed breast model.
    Wang W; Qiu R; Ren L; Liu H; Wu Z; Li C; Niu Y; Li J
    Med Phys; 2017 Jun; 44(6):2503-2514. PubMed ID: 28295395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computation of the glandular radiation dose in digital tomosynthesis of the breast.
    Sechopoulos I; Suryanarayanan S; Vedantham S; D'Orsi C; Karellas A
    Med Phys; 2007 Jan; 34(1):221-32. PubMed ID: 17278508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of breast phantoms using a 3D printer and glandular dose evaluation.
    Lee DY; Jo YI; Yang SH
    J Appl Clin Med Phys; 2021 Oct; 22(10):270-277. PubMed ID: 34529348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patient investigation of average glandular dose and incident air kerma for digital mammography.
    Kawaguchi A; Matsunaga Y; Otsuka T; Suzuki S
    Radiol Phys Technol; 2014 Jan; 7(1):102-8. PubMed ID: 24234736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral dependence of glandular tissue dose in screen-film mammography.
    Wu X; Barnes GT; Tucker DM
    Radiology; 1991 Apr; 179(1):143-8. PubMed ID: 2006265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra-individual comparison of average glandular dose of two digital mammography units using different anode/filter combinations.
    Engelken FJ; Meyer H; Juran R; Bick U; Fallenberg E; Diekmann F
    Acad Radiol; 2009 Oct; 16(10):1272-80. PubMed ID: 19632866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.