BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24704964)

  • 1. Response of pore water Al, Fe and S concentrations to waterlogging in a boreal acid sulphate soil.
    Virtanen S; Simojoki A; Hartikainen H; Yli-Halla M
    Sci Total Environ; 2014 Jul; 485-486():130-142. PubMed ID: 24704964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-scale comparison of dissolved Al, Fe and S in a boreal acid sulphate soil.
    Virtanen S; Simojoki A; Rita H; Toivonen J; Hartikainen H; Yli-Halla M
    Sci Total Environ; 2014 Nov; 499():336-48. PubMed ID: 25203826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of Fe(II), sulphur and phosphate in pilot-scale constructed wetlands treating a sulphate-rich chlorinated hydrocarbon contaminated groundwater.
    Wu S; Chen Z; Braeckevelt M; Seeger EM; Dong R; Kästner M; Paschke H; Hahn A; Kayser G; Kuschk P
    Water Res; 2012 Apr; 46(6):1923-32. PubMed ID: 22289675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in acidity and metal geochemistry in soils, groundwater, drain and river water in the Lower Murray River after a severe drought.
    Mosley LM; Fitzpatrick RW; Palmer D; Leyden E; Shand P
    Sci Total Environ; 2014 Jul; 485-486():281-291. PubMed ID: 24727046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimony retention and release from drained and waterlogged shooting range soil under field conditions.
    Hockmann K; Tandy S; Lenz M; Reiser R; Conesa HM; Keller M; Studer B; Schulin R
    Chemosphere; 2015 Sep; 134():536-43. PubMed ID: 25592464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exchangeable and secondary mineral reactive pools of aluminium in coastal lowland acid sulfate soils.
    Yvanes-Giuliani YAM; Waite TD; Collins RN
    Sci Total Environ; 2014 Jul; 485-486():232-240. PubMed ID: 24727041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur controlled cadmium dissolution in pore water of cadmium-contaminated soil as affected by DOC under waterlogging.
    Wang G; Hu Z; Li S; Wang Y; Sun X; Zhang X; Li M
    Chemosphere; 2020 Feb; 240():124846. PubMed ID: 31550594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches.
    Baken S; Verbeeck M; Verheyen D; Diels J; Smolders E
    Water Res; 2015 Mar; 71():160-70. PubMed ID: 25616116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory investigations of weathering of soils from Mammoth Mountain, CA, a naturally CO2-impacted field site.
    Sanchez H; Menezes G; Ellis A; Espinosa-Villegas C; Khachikian C
    Environ Sci Technol; 2014 Oct; 48(20):12056-62. PubMed ID: 25224834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimony mobility during prolonged waterlogging and reoxidation of shooting range soil: A field experiment.
    Tandy S; Hockmann K; Keller M; Studer B; Papritz A; Schulin R
    Sci Total Environ; 2018 May; 624():838-844. PubMed ID: 29274608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of incubation on solubility and mobility of trace metals in two contaminated soils.
    Ma LQ; Dong Y
    Environ Pollut; 2004 Aug; 130(3):301-7. PubMed ID: 15182963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presence and mobility of arsenic in estuarine wetland soils of the Scheldt estuary (Belgium).
    Du Laing G; Chapagain SK; Dewispelaere M; Meers E; Kazama F; Tack FM; Rinklebe J; Verloo MG
    J Environ Monit; 2009 Apr; 11(4):873-81. PubMed ID: 19557243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sediment geochemistry of Al, Fe, and P for two historically acidic, oligotrophic Maine lakes.
    Wilson TA; Norton SA; Lake BA; Amirbahman A
    Sci Total Environ; 2008 Oct; 404(2-3):269-75. PubMed ID: 18760448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of air sparging and vadose zone aeration for remediation of iron and manganese-impacted groundwater at a closed municipal landfill.
    Pleasant S; O'Donnell A; Powell J; Jain P; Townsend T
    Sci Total Environ; 2014 Jul; 485-486():31-40. PubMed ID: 24704954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the impact of preload on pyrite-rich sediment and groundwater quality.
    Karikari-Yeboah O; Addai-Mensah J
    Environ Monit Assess; 2017 Feb; 189(2):58. PubMed ID: 28091885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogeochemical mechanisms of iron (Fe) and manganese (Mn) in groundwater and soil profiles in the Zhongning section of the Weining Plain (northwest China).
    Xu F; Li P
    Sci Total Environ; 2024 Aug; 939():173506. PubMed ID: 38815819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution and concentration of sulfur in relation to vegetation cover and soil properties on a reclaimed sulfur mine site (Southern Poland).
    Likus-Cieślik J; Pietrzykowski M; Szostak M; Szulczewski M
    Environ Monit Assess; 2017 Feb; 189(2):87. PubMed ID: 28144870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake.
    Wan XM; Tandy S; Hockmann K; Schulin R
    Environ Pollut; 2013 Jan; 172():53-60. PubMed ID: 22982553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.