These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 24704989)

  • 1. Secondary neutron doses received by paediatric patients during intracranial proton therapy treatments.
    Sayah R; Farah J; Donadille L; Hérault J; Delacroix S; De Marzi L; De Oliveira A; Vabre I; Stichelbaut F; Lee C; Bolch WE; Clairand I
    J Radiol Prot; 2014 Jun; 34(2):279-96. PubMed ID: 24704989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms.
    Zacharatou Jarlskog C; Lee C; Bolch WE; Xu XG; Paganetti H
    Phys Med Biol; 2008 Feb; 53(3):693-717. PubMed ID: 18199910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary Neutron Doses to Pediatric Patients During Intracranial Proton Therapy: Monte Carlo Simulation of the Neutron Energy Spectrum and its Organ Doses.
    Matsumoto S; Koba Y; Kohno R; Lee C; Bolch WE; Kai M
    Health Phys; 2016 Apr; 110(4):380-6. PubMed ID: 26910030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo modeling of proton therapy installations: a global experimental method to validate secondary neutron dose calculations.
    Farah J; Martinetti F; Sayah R; Lacoste V; Donadille L; Trompier F; Nauraye C; De Marzi L; Vabre I; Delacroix S; Hérault J; Clairand I
    Phys Med Biol; 2014 Jun; 59(11):2747-65. PubMed ID: 24800943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of whole-body phantom designs to estimate organ equivalent neutron doses for secondary cancer risk assessment in proton therapy.
    Moteabbed M; Geyer A; Drenkhahn R; Bolch WE; Paganetti H
    Phys Med Biol; 2012 Jan; 57(2):499-515. PubMed ID: 22217682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary neutron doses in proton therapy treatments of ocular melanoma and craniopharyngioma.
    Farah J; Sayah R; Martinetti F; Donadille L; Lacoste V; Hérault J; Delacroix S; Nauraye C; Vabre I; Lee C; Bolch WE; Clairand I
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):363-7. PubMed ID: 24222710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Configuration and validation of an analytical model predicting secondary neutron radiation in proton therapy using Monte Carlo simulations and experimental measurements.
    Farah J; Bonfrate A; De Marzi L; De Oliveira A; Delacroix S; Martinetti F; Trompier F; Clairand I
    Phys Med; 2015 May; 31(3):248-56. PubMed ID: 25682475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutron equivalent doses and associated lifetime cancer incidence risks for head & neck and spinal proton therapy.
    Athar BS; Paganetti H
    Phys Med Biol; 2009 Aug; 54(16):4907-26. PubMed ID: 19641238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutron H*(10) inside a proton therapy facility: comparison between Monte Carlo simulations and WENDI-2 measurements.
    De Smet V; Stichelbaut F; Vanaudenhove T; Mathot G; De Lentdecker G; Dubus A; Pauly N; Gerardy I
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):417-21. PubMed ID: 24255173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a Monte Carlo Framework for Out-of-Field Dose Calculations in Proton Therapy.
    De Saint-Hubert M; Verbeek N; Bäumer C; Esser J; Wulff J; Nabha R; Van Hoey O; Dabin J; Stuckmann F; Vasi F; Radonic S; Boissonnat G; Schneider U; Rodriguez M; Timmermann B; Thierry-Chef I; Brualla L
    Front Oncol; 2022; 12():882489. PubMed ID: 35756661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of irradiation setup in proton spot scanning brain therapy on organ doses from secondary radiation.
    Ardenfors O; Gudowska I; Flejmer AM; Dasu A
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):261-266. PubMed ID: 30085315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shielding implications for secondary neutrons and photons produced within the patient during IMPT.
    DeMarco J; Kupelian P; Santhanam A; Low D
    Med Phys; 2013 Jul; 40(7):071701. PubMed ID: 23822405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems.
    Farah J; Mares V; Romero-Expósito M; Trinkl S; Domingo C; Dufek V; Klodowska M; Kubancak J; Knežević Ž; Liszka M; Majer M; Miljanić S; Ploc O; Schinner K; Stolarczyk L; Trompier F; Wielunski M; Olko P; Harrison RM
    Med Phys; 2015 May; 42(5):2572-84. PubMed ID: 25979049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy.
    Islam MR; Collums TL; Zheng Y; Monson J; Benton ER
    Phys Med Biol; 2013 Nov; 58(22):8235-51. PubMed ID: 24201018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytic estimates of secondary neutron dose in proton therapy.
    Anferov V
    Phys Med Biol; 2010 Dec; 55(24):7509-22. PubMed ID: 21098918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of beam incidence and irradiation parameters on stray neutron doses to healthy organs of pediatric patients treated for an intracranial tumor with passive scattering proton therapy.
    Bonfrate A; Farah J; De Marzi L; Delacroix S; Hérault J; Sayah R; Lee C; Bolch WE; Clairand I
    Phys Med; 2016 Apr; 32(4):590-9. PubMed ID: 27050170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Narrow beam neutron dosimetry.
    Ferenci MS
    Radiat Prot Dosimetry; 2004; 110(1-4):813-7. PubMed ID: 15353751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulations of neutron spectral fluence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit.
    Zheng Y; Fontenot J; Taddei P; Mirkovic D; Newhauser W
    Phys Med Biol; 2008 Jan; 53(1):187-201. PubMed ID: 18182696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Out-of-field doses for scanning proton radiotherapy of shallowly located paediatric tumours-a comparison of range shifter and 3D printed compensator.
    Wochnik A; Stolarczyk L; Ambrožová I; Davídková M; De Saint-Hubert M; Domański S; Domingo C; Knežević Ž; Kopeć R; Kuć M; Majer M; Mojżeszek N; Mares V; Martínez-Rovira I; Caballero-Pacheco MÁ; Pyszka E; Swakoń J; Trinkl S; Tisi M; Harrison R; Olko P
    Phys Med Biol; 2021 Jan; 66(3):035012. PubMed ID: 33202399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Risk of developing second cancer from neutron dose in proton therapy as function of field characteristics, organ, and patient age.
    Zacharatou Jarlskog C; Paganetti H
    Int J Radiat Oncol Biol Phys; 2008 Sep; 72(1):228-35. PubMed ID: 18571337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.