These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24705097)

  • 1. An evaluation of a citizen science data collection program for recording wildlife observations along a highway.
    Paul K; Quinn MS; Huijser MP; Graham J; Broberg L
    J Environ Manage; 2014 Jun; 139():180-7. PubMed ID: 24705097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying wildlife road crossing mitigation sites using a multi-data approach - A case study from southwestern Costa Rica.
    Pinto CM; Vargas Soto JS; Flatt E; Barboza K; Whitworth A
    J Environ Manage; 2024 Jun; 361():121263. PubMed ID: 38820795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do landscape context and fences influence roadkill locations of small and medium-sized mammals?
    Plante J; Jaeger JAG; Desrochers A
    J Environ Manage; 2019 Apr; 235():511-520. PubMed ID: 30711836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An adaptive plan for prioritizing road sections for fencing to reduce animal mortality.
    Spanowicz AG; Teixeira FZ; Jaeger JAG
    Conserv Biol; 2020 Oct; 34(5):1210-1220. PubMed ID: 32227646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial wildlife-vehicle collision models: a review of current work and its application to transportation mitigation projects.
    Gunson KE; Mountrakis G; Quackenbush LJ
    J Environ Manage; 2011 Apr; 92(4):1074-82. PubMed ID: 21190788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of data sets varying in spatial accuracy used to predict the occurrence of wildlife-vehicle collisions.
    Gunson KE; Clevenger AP; Ford AT; Bissonette JA; Hardy A
    Environ Manage; 2009 Aug; 44(2):268-77. PubMed ID: 19452205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphibian and reptile road-kills on tertiary roads in relation to landscape structure: using a citizen science approach with open-access land cover data.
    Heigl F; Horvath K; Laaha G; Zaller JG
    BMC Ecol; 2017 Jun; 17(1):24. PubMed ID: 28651557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-derived metrics describing the behaviour of field-based citizen scientists provide insights for project design and modelling bias.
    August T; Fox R; Roy DB; Pocock MJO
    Sci Rep; 2020 Jul; 10(1):11009. PubMed ID: 32620931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of wildlife carcass underreporting on KDE+ hotspots identification and importance.
    Bíl M; Andrášik R
    J Environ Manage; 2020 Dec; 275():111254. PubMed ID: 32841791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying and correcting spatial bias in opportunistic citizen science data for wild ungulates in Norway.
    Cretois B; Simmonds EG; Linnell JDC; van Moorter B; Rolandsen CM; Solberg EJ; Strand O; Gundersen V; Roer O; Rød JK
    Ecol Evol; 2021 Nov; 11(21):15191-15204. PubMed ID: 34765170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research.
    Soroye P; Ahmed N; Kerr JT
    Glob Chang Biol; 2018 Nov; 24(11):5281-5291. PubMed ID: 29920854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wildlife warning reflectors do not mitigate wildlife-vehicle collisions on roads.
    Benten A; Hothorn T; Vor T; Ammer C
    Accid Anal Prev; 2018 Nov; 120():64-73. PubMed ID: 30096449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial night light helps account for observer bias in citizen science monitoring of an expanding large mammal population.
    Ditmer MA; Iannarilli F; Tri AN; Garshelis DL; Carter NH
    J Anim Ecol; 2021 Feb; 90(2):330-342. PubMed ID: 32895962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wildlife roadkill in the Tsavo Ecosystem, Kenya: identifying hotspots, potential drivers, and affected species.
    Lala F; Chiyo PI; Kanga E; Omondi P; Ngene S; Severud WJ; Morris AW; Bump J
    Heliyon; 2021 Mar; 7(3):e06364. PubMed ID: 33748462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Citizen Science and Wildlife Disease Surveillance.
    Lawson B; Petrovan SO; Cunningham AA
    Ecohealth; 2015 Dec; 12(4):693-702. PubMed ID: 26318592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of budburst phenology trends and precision among participants in a citizen science program.
    Bison M; Yoccoz NG; Carlson BZ; Delestrade A
    Int J Biometeorol; 2019 Jan; 63(1):61-72. PubMed ID: 30382351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generalized approach for producing, quantifying, and validating citizen science data from wildlife images.
    Swanson A; Kosmala M; Lintott C; Packer C
    Conserv Biol; 2016 Jun; 30(3):520-31. PubMed ID: 27111678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of an extreme event-the COVID-19 pandemic-On establishment of and data collection by a citizen science project.
    Zhang EY; Baldwin A; Hundley C; Chang E; Auderset S; Bawendi M; Kristensen TV
    PLoS One; 2024; 19(5):e0303429. PubMed ID: 38820440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal persistence of bat roadkill hotspots in response to dynamics of habitat suitability and activity patterns.
    Medinas D; Marques JT; Costa P; Santos S; Rebelo H; Barbosa AM; Mira A
    J Environ Manage; 2021 Jan; 277():111412. PubMed ID: 33038670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Citizen science reporting indicates geographic and phenotypic drivers of road use and mortality in a threatened rattlesnake.
    Rhodes C; Haunfelder W; Carlson BE
    Curr Zool; 2023 Jun; 69(3):264-276. PubMed ID: 37351304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.