BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24705256)

  • 1. Aortic superoxide production at the early hyperglycemic stage in a rat type 2 diabetes model and the effects of pravastatin.
    Kikuchi C; Kajikuri J; Hori E; Nagami C; Matsunaga T; Kimura K; Itoh T
    Biol Pharm Bull; 2014; 37(6):996-1002. PubMed ID: 24705256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristic changes in coronary artery at the early hyperglycaemic stage in a rat type 2 diabetes model and the effects of pravastatin.
    Kajikuri J; Watanabe Y; Ito Y; Ito R; Yamamoto T; Itoh T
    Br J Pharmacol; 2009 Sep; 158(2):621-32. PubMed ID: 19645710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Glyceraldehyde-Derived AGEs and Mitochondria in Superoxide Production in Femoral Artery of OLETF Rat and Effects of Pravastatin.
    Hori E; Kikuchi C; Nagami C; Kajikuri J; Itoh T; Takeuchi M; Matsunaga T
    Biol Pharm Bull; 2017 Nov; 40(11):1903-1908. PubMed ID: 28835584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pravastatin normalizes endothelium-derived contracting factor-mediated response via suppression of Rho-kinase signalling in mesenteric artery from aged type 2 diabetic rat.
    Ishida K; Matsumoto T; Taguchi K; Kamata K; Kobayashi T
    Acta Physiol (Oxf); 2012 Jun; 205(2):255-65. PubMed ID: 22212448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pravastatin normalizes ET-1-induced contraction in the aorta of type 2 diabetic OLETF rats by suppressing the KSR1/ERK complex.
    Nemoto S; Taguchi K; Matsumoto T; Kamata K; Kobayashi T
    Am J Physiol Heart Circ Physiol; 2012 Oct; 303(7):H893-902. PubMed ID: 22886408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pravastatin on progression of glucose intolerance and cardiovascular remodeling in a type II diabetes model.
    Yu Y; Ohmori K; Chen Y; Sato C; Kiyomoto H; Shinomiya K; Takeuchi H; Mizushige K; Kohno M
    J Am Coll Cardiol; 2004 Aug; 44(4):904-13. PubMed ID: 15312879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical activity maintains aortic endothelium-dependent relaxation in the obese type 2 diabetic OLETF rat.
    Bunker AK; Arce-Esquivel AA; Rector RS; Booth FW; Ibdah JA; Laughlin MH
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1889-901. PubMed ID: 20304812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms underlying endothelial dysfunction in diabetes mellitus.
    Hink U; Li H; Mollnau H; Oelze M; Matheis E; Hartmann M; Skatchkov M; Thaiss F; Stahl RA; Warnholtz A; Meinertz T; Griendling K; Harrison DG; Forstermann U; Munzel T
    Circ Res; 2001 Feb; 88(2):E14-22. PubMed ID: 11157681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH oxidase inhibitor, apocynin, restores the impaired endothelial-dependent and -independent responses and scavenges superoxide anion in rats with type 2 diabetes complicated by NO dysfunction.
    Hayashi T; Juliet PA; Kano-Hayashi H; Tsunekawa T; Dingqunfang D; Sumi D; Matsui-Hirai H; Fukatsu A; Iguchi A
    Diabetes Obes Metab; 2005 Jul; 7(4):334-43. PubMed ID: 15955119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dysfunction of endothelium-dependent relaxation to insulin via PKC-mediated GRK2/Akt activation in aortas of ob/ob mice.
    Taguchi K; Kobayashi T; Matsumoto T; Kamata K
    Am J Physiol Heart Circ Physiol; 2011 Aug; 301(2):H571-83. PubMed ID: 21572010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered endothelium-dependent responsiveness in the aortas and renal arteries of Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of non-insulin-dependent diabetes mellitus.
    Kagota S; Yamaguchi Y; Nakamura K; Kunitomo M
    Gen Pharmacol; 2000 Mar; 34(3):201-9. PubMed ID: 11120382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imbalance between endothelium-derived relaxing and contracting factors in mesenteric arteries from aged OLETF rats, a model of Type 2 diabetes.
    Matsumoto T; Kakami M; Noguchi E; Kobayashi T; Kamata K
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1480-90. PubMed ID: 17513496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of combined olmesartan and pravastatin on glucose intolerance and cardiovascular remodeling in a metabolic-syndrome model.
    Mizukawa M; Ohmori K; Obayashi A; Ishihara Y; Yoshida J; Noma T; Yukiiri K; Kosaka H; Kohno M
    Hypertens Res; 2009 Jul; 32(7):617-24. PubMed ID: 19461650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmented Contractility to Noradrenaline in Femoral Arteries from the Otsuka Long-Evans Tokushima Fatty Rat, a Model of Type 2 Diabetes.
    Kobayashi S; Matsumoto T; Ando M; Iguchi M; Taguchi K; Kobayashi T
    Biol Pharm Bull; 2017; 40(12):2061-2067. PubMed ID: 29199231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential changes of aorta and carotid vasodilation in type 2 diabetic GK and OLETF rats: paradoxical roles of hyperglycemia and insulin.
    Zhong MF; Shen WL; Tabuchi M; Nakamura K; Chen YC; Qiao CZ; He J; Yang J; Zhang C; Kamenov Z; Higashino H; Chen H
    Exp Diabetes Res; 2012; 2012():429020. PubMed ID: 21977022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation.
    Wagner AH; Köhler T; Rückschloss U; Just I; Hecker M
    Arterioscler Thromb Vasc Biol; 2000 Jan; 20(1):61-9. PubMed ID: 10634801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pravastatin on impaired endothelium-dependent relaxation induced by lysophosphatidylcholine in rat aorta.
    Deng HF; Xiong Y
    Acta Pharmacol Sin; 2005 Jan; 26(1):92-8. PubMed ID: 15659120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catechin averts experimental diabetes mellitus-induced vascular endothelial structural and functional abnormalities.
    Bhardwaj P; Khanna D; Balakumar P
    Cardiovasc Toxicol; 2014 Mar; 14(1):41-51. PubMed ID: 24048981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes.
    Matsumoto T; Noguchi E; Ishida K; Kobayashi T; Yamada N; Kamata K
    Am J Physiol Heart Circ Physiol; 2008 Sep; 295(3):H1165-H1176. PubMed ID: 18641273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A HMG-CoA reductase inhibitor possesses a potent anti-atherosclerotic effect other than serum lipid lowering effects--the relevance of endothelial nitric oxide synthase and superoxide anion scavenging action.
    Sumi D; Hayashi T; Thakur NK; Jayachandran M; Asai Y; Kano H; Matsui H; Iguchi A
    Atherosclerosis; 2001 Apr; 155(2):347-57. PubMed ID: 11254905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.