These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 24705516)

  • 1. Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption.
    Wang BL; Ghaderi A; Zhou H; Agresti J; Weitz DA; Fink GR; Stephanopoulos G
    Nat Biotechnol; 2014 May; 32(5):473-8. PubMed ID: 24705516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-aptamers-in-droplets (RAPID) high-throughput screening for secretory phenotypes.
    Abatemarco J; Sarhan MF; Wagner JM; Lin JL; Liu L; Hassouneh W; Yuan SF; Alper HS; Abate AR
    Nat Commun; 2017 Aug; 8(1):332. PubMed ID: 28835641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High throughput single cell counting in droplet-based microfluidics.
    Lu H; Caen O; Vrignon J; Zonta E; El Harrak Z; Nizard P; Baret JC; Taly V
    Sci Rep; 2017 May; 7(1):1366. PubMed ID: 28465615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh-Throughput Screening of Single-Cell Lysates for Directed Evolution and Functional Metagenomics.
    Gielen F; Colin PY; Mair P; Hollfelder F
    Methods Mol Biol; 2018; 1685():297-309. PubMed ID: 29086317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics.
    Beneyton T; Wijaya IP; Postros P; Najah M; Leblond P; Couvent A; Mayot E; Griffiths AD; Drevelle A
    Sci Rep; 2016 Jun; 6():27223. PubMed ID: 27270141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet-based microfluidic analysis and screening of single plant cells.
    Yu Z; Boehm CR; Hibberd JM; Abell C; Haseloff J; Burgess SJ; Reyna-Llorens I
    PLoS One; 2018; 13(5):e0196810. PubMed ID: 29723275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy.
    Guo B; Lei C; Kobayashi H; Ito T; Yalikun Y; Jiang Y; Tanaka Y; Ozeki Y; Goda K
    Cytometry A; 2017 May; 91(5):494-502. PubMed ID: 28399328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorting for secreted molecule production using a biosensor-in-microdroplet approach.
    Bowman EK; Wagner JM; Yuan SF; Deaner M; Palmer CM; D'Oelsnitz S; Cordova L; Li X; Craig FF; Alper HS
    Proc Natl Acad Sci U S A; 2021 Sep; 118(36):. PubMed ID: 34475218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening cellular metabolic activity.
    El Debs B; Utharala R; Merten CA
    Nat Biotechnol; 2014 Nov; 32(11):1092. PubMed ID: 25380440
    [No Abstract]   [Full Text] [Related]  

  • 11. Single-cell nucleic acid profiling in droplets (SNAPD) enables high-throughput analysis of heterogeneous cell populations.
    Hyman LB; Christopher CR; Romero PA
    Nucleic Acids Res; 2021 Oct; 49(18):e103. PubMed ID: 34233007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging.
    Park MC; Hur JY; Cho HS; Park SH; Suh KY
    Lab Chip; 2011 Jan; 11(1):79-86. PubMed ID: 20957290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gregory Stephanopoulos and colleagues reply to Screening cellular metabolic activity.
    Stephanopoulos G
    Nat Biotechnol; 2014 Nov; 32(11):1092-3. PubMed ID: 25380441
    [No Abstract]   [Full Text] [Related]  

  • 15. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis.
    Wen N; Zhao Z; Fan B; Chen D; Men D; Wang J; Chen J
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27399651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A design and optimization of a high throughput valve based microfluidic device for single cell compartmentalization and analysis.
    Briones J; Espulgar W; Koyama S; Takamatsu H; Tamiya E; Saito M
    Sci Rep; 2021 Jun; 11(1):12995. PubMed ID: 34155296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Microfluidics for the Screening of Yeast Libraries.
    Huang M; Joensson HN; Nielsen J
    Methods Mol Biol; 2018; 1671():307-317. PubMed ID: 29170967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic techniques for high throughput single cell analysis.
    Reece A; Xia B; Jiang Z; Noren B; McBride R; Oakey J
    Curr Opin Biotechnol; 2016 Aug; 40():90-96. PubMed ID: 27032065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation.
    Eun YJ; Utada AS; Copeland MF; Takeuchi S; Weibel DB
    ACS Chem Biol; 2011 Mar; 6(3):260-6. PubMed ID: 21142208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.