These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 24705567)
1. Development of multi-functional chelators based on sarcophagine cages. Liu S; Li Z; Conti PS Molecules; 2014 Apr; 19(4):4246-55. PubMed ID: 24705567 [TBL] [Abstract][Full Text] [Related]
2. Efficient preparation and biological evaluation of a novel multivalency bifunctional chelator for 64Cu radiopharmaceuticals. Liu S; Li Z; Yap LP; Huang CW; Park R; Conti PS Chemistry; 2011 Sep; 17(37):10222-5. PubMed ID: 21815227 [No Abstract] [Full Text] [Related]
3. Chelators for copper radionuclides in positron emission tomography radiopharmaceuticals. Cai Z; Anderson CJ J Labelled Comp Radiopharm; 2014 Apr; 57(4):224-30. PubMed ID: 24347474 [TBL] [Abstract][Full Text] [Related]
4. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89. Pandya DN; Pailloux S; Tatum D; Magda D; Wadas TJ Chem Commun (Camb); 2015 Feb; 51(12):2301-3. PubMed ID: 25556851 [TBL] [Abstract][Full Text] [Related]
5. Novel hexadentate and pentadentate chelators for ⁶⁴Cu-based targeted PET imaging. Sin I; Kang CS; Bandara N; Sun X; Zhong Y; Rogers BE; Chong HS Bioorg Med Chem; 2014 Apr; 22(8):2553-62. PubMed ID: 24657050 [TBL] [Abstract][Full Text] [Related]
6. The fast method of Cu-porphyrin complex synthesis for potential use in positron emission tomography imaging. Kilian K; Pęgier M; Pyrzyńska K Spectrochim Acta A Mol Biomol Spectrosc; 2016 Apr; 159():123-7. PubMed ID: 26836453 [TBL] [Abstract][Full Text] [Related]
7. Revisiting dithiadiaza macrocyclic chelators for copper-64 PET imaging. Shuvaev S; Suturina EA; Rotile NJ; Astashkin A; Ziegler CJ; Ross AW; Walker TL; Caravan P; Taschner IS Dalton Trans; 2020 Oct; 49(40):14088-14098. PubMed ID: 32970072 [TBL] [Abstract][Full Text] [Related]
8. PET imaging of tumours with a 64Cu labeled macrobicyclic cage amine ligand tethered to Tyr3-octreotate. Paterson BM; Roselt P; Denoyer D; Cullinane C; Binns D; Noonan W; Jeffery CM; Price RI; White JM; Hicks RJ; Donnelly PS Dalton Trans; 2014 Jan; 43(3):1386-96. PubMed ID: 24202174 [TBL] [Abstract][Full Text] [Related]
9. The ionic charge of copper-64 complexes conjugated to an engineered antibody affects biodistribution. Dearling JL; Paterson BM; Akurathi V; Betanzos-Lara S; Treves ST; Voss SD; White JM; Huston JS; Smith SV; Donnelly PS; Packard AB Bioconjug Chem; 2015 Apr; 26(4):707-17. PubMed ID: 25719414 [TBL] [Abstract][Full Text] [Related]
10. Coordination Chemistry of Bifunctional Chemical Agents Designed for Applications in Sharma AK; Schultz JW; Prior JT; Rath NP; Mirica LM Inorg Chem; 2017 Nov; 56(22):13801-13814. PubMed ID: 29112419 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of 64Cu(II)-bis(dithiocarbamatebisphosphonate) and its conjugation with superparamagnetic iron oxide nanoparticles: in vivo evaluation as dual-modality PET-MRI agent. Torres Martin de Rosales R; Tavaré R; Paul RL; Jauregui-Osoro M; Protti A; Glaria A; Varma G; Szanda I; Blower PJ Angew Chem Int Ed Engl; 2011 Jun; 50(24):5509-13. PubMed ID: 21544908 [No Abstract] [Full Text] [Related]
12. Synthesis of a novel bifunctional chelator AmBaSar based on sarcophagine for peptide conjugation and (64)Cu radiolabelling. Cai H; Fissekis J; Conti PS Dalton Trans; 2009 Jul; (27):5395-400. PubMed ID: 19565091 [TBL] [Abstract][Full Text] [Related]
13. H(2)azapa: a versatile acyclic multifunctional chelator for (67)Ga, (64)Cu, (111)In, and (177)Lu. Bailey GA; Price EW; Zeglis BM; Ferreira CL; Boros E; Lacasse MJ; Patrick BO; Lewis JS; Adam MJ; Orvig C Inorg Chem; 2012 Nov; 51(22):12575-89. PubMed ID: 23106422 [TBL] [Abstract][Full Text] [Related]
14. An improved synthesis and biological evaluation of a new cage-like bifunctional chelator, 4-((8-amino-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1-ylamino)methyl)benzoic acid, for 64Cu radiopharmaceuticals. Cai H; Li Z; Huang CW; Park R; Shahinian AH; Conti PS Nucl Med Biol; 2010 Jan; 37(1):57-65. PubMed ID: 20122669 [TBL] [Abstract][Full Text] [Related]
15. Cross-bridged macrocyclic chelators for stable complexation of copper radionuclides for PET imaging. Anderson CJ; Wadas TJ; Wong EH; Weisman GR Q J Nucl Med Mol Imaging; 2008 Jun; 52(2):185-92. PubMed ID: 18043536 [TBL] [Abstract][Full Text] [Related]
16. Gallium Complexation, Stability, and Bioconjugation of 1,4,7-Triazacyclononane Derived Chelators with Azaheterocyclic Arms. Schmidtke A; Läppchen T; Weinmann C; Bier-Schorr L; Keller M; Kiefer Y; Holland JP; Bartholomä MD Inorg Chem; 2017 Aug; 56(15):9097-9110. PubMed ID: 28742337 [TBL] [Abstract][Full Text] [Related]
17. Design, synthesis and evaluation of novel bifunctional tetrahydroxamate chelators for PET imaging of Rousseau J; Zhang Z; Dias GM; Zhang C; Colpo N; Bénard F; Lin KS Bioorg Med Chem Lett; 2017 Feb; 27(4):708-712. PubMed ID: 28131709 [TBL] [Abstract][Full Text] [Related]
18. Rapid chelator-free radiolabeling of quantum dots for in vivo imaging. Tang T; Wei Y; Yang Q; Yang Y; Sailor MJ; Pang HB Nanoscale; 2019 Nov; 11(46):22248-22254. PubMed ID: 31746913 [TBL] [Abstract][Full Text] [Related]