BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24705594)

  • 1. In situ profiling of lithium/Ag₂VP₂O₈ primary batteries using energy dispersive X-ray diffraction.
    Kirshenbaum KC; Bock DC; Zhong Z; Marschilok AC; Takeuchi KJ; Takeuchi ES
    Phys Chem Chem Phys; 2014 May; 16(19):9138-47. PubMed ID: 24705594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Batteries. In situ visualization of Li/Ag₂VP₂O₈ batteries revealing rate-dependent discharge mechanism.
    Kirshenbaum K; Bock DC; Lee CY; Zhong Z; Takeuchi KJ; Marschilok AC; Takeuchi ES
    Science; 2015 Jan; 347(6218):149-54. PubMed ID: 25574017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Multifunctional Bimetallic Materials on Lithium Battery Electrochemistry.
    Durham JL; Poyraz AS; Takeuchi ES; Marschilok AC; Takeuchi KJ
    Acc Chem Res; 2016 Sep; 49(9):1864-72. PubMed ID: 27564839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver Vanadium Diphosphate Ag
    Takeuchi ES; Lee CY; Chen PJ; Menard MC; Marschilok AC; Takeuchi KJ
    J Solid State Chem; 2013 Apr; 200():232-240. PubMed ID: 25866419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy dispersive X-ray diffraction (EDXRD) for operando materials characterization within batteries.
    Marschilok AC; Bruck AM; Abraham A; Stackhouse CA; Takeuchi KJ; Takeuchi ES; Croft M; Gallaway JW
    Phys Chem Chem Phys; 2020 Sep; 22(37):20972-20989. PubMed ID: 32338255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of structural evolution and phase distribution of a lithium vanadium oxide (Li
    Zhang Q; Bruck AM; Bock DC; Li J; Sarbada V; Hull R; Stach EA; Takeuchi KJ; Takeuchi ES; Marschilok AC
    Phys Chem Chem Phys; 2017 May; 19(21):14160-14169. PubMed ID: 28530304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operando observation of the gold-electrolyte interface in Li-O2 batteries.
    Gittleson FS; Ryu WH; Taylor AD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries.
    Nelson J; Misra S; Yang Y; Jackson A; Liu Y; Wang H; Dai H; Andrews JC; Cui Y; Toney MF
    J Am Chem Soc; 2012 Apr; 134(14):6337-43. PubMed ID: 22432568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal Resolution of Phase Formation in Thick Porous Sodium Vanadium Oxide (NaV
    Singh G; Tang CR; Nicoll A; Torres J; Housel LM; Wang L; Takeuchi KJ; Takeuchi ES; Marschilok AC
    J Phys Chem C Nanomater Interfaces; 2023 Mar; 127(8):3940-3951. PubMed ID: 36895658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Powder Diffraction Studies of Electrode Materials in Rechargeable Batteries.
    Sharma N; Pang WK; Guo Z; Peterson VK
    ChemSusChem; 2015 Sep; 8(17):2826-53. PubMed ID: 26223736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of dispersive XAFS system for analysis of time-resolved spatial distribution of electrode reaction.
    Katayama M; Miyahara R; Watanabe T; Yamagishi H; Yamashita S; Kizaki T; Sugawara Y; Inada Y
    J Synchrotron Radiat; 2015 Sep; 22(5):1227-32. PubMed ID: 26289274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In operando spatiotemporal study of Li(2)O(2) grain growth and its distribution inside operating Li-O(2) batteries.
    Shui JL; Okasinski JS; Chen C; Almer JD; Liu DJ
    ChemSusChem; 2014 Feb; 7(2):543-8. PubMed ID: 24399807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale characterization of a lithium/sulfur battery by coupling operando X-ray tomography and spatially-resolved diffraction.
    Tonin G; Vaughan G; Bouchet R; Alloin F; Di Michiel M; Boutafa L; Colin JF; Barchasz C
    Sci Rep; 2017 Jun; 7(1):2755. PubMed ID: 28584237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrochemical cell for in operando studies of lithium/sodium batteries using a conventional x-ray powder diffractometer.
    Shen Y; Pedersen EE; Christensen M; Iversen BB
    Rev Sci Instrum; 2014 Oct; 85(10):104103. PubMed ID: 25362421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insight into the working mechanism of lithium-sulfur batteries: in situ and operando X-ray diffraction characterization.
    Waluś S; Barchasz C; Colin JF; Martin JF; Elkaïm E; Leprêtre JC; Alloin F
    Chem Commun (Camb); 2013 Sep; 49(72):7899-901. PubMed ID: 23873017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reaction mechanism of a complex intercalation system: in situ X-ray diffraction studies of the chemical and electrochemical lithium intercalation in Cr4TiSe8.
    Behrens M; Kiebach R; Ophey J; Riemenschneider O; Bensch W
    Chemistry; 2006 Aug; 12(24):6348-55. PubMed ID: 16721885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LiFe(MoO4)2 as a novel anode material for lithium-ion batteries.
    Chen N; Yao Y; Wang D; Wei Y; Bie X; Wang C; Chen G; Du F
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10661-6. PubMed ID: 24905851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.
    Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S
    J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. (De)lithiation mechanism of Li/SeS(x) (x = 0-7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy.
    Cui Y; Abouimrane A; Lu J; Bolin T; Ren Y; Weng W; Sun C; Maroni VA; Heald SM; Amine K
    J Am Chem Soc; 2013 May; 135(21):8047-56. PubMed ID: 23631402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.