These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24705627)

  • 1. Information transfer and criticality in the Ising model on the human connectome.
    Marinazzo D; Pellicoro M; Wu G; Angelini L; Cortés JM; Stramaglia S
    PLoS One; 2014; 9(4):e93616. PubMed ID: 24705627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical Signatures of Structural Connectivity Damage to a Model of the Brain Posed at Criticality.
    Haimovici A; Balenzuela P; Tagliazucchi E
    Brain Connect; 2016 Dec; 6(10):759-771. PubMed ID: 27758115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain organization into resting state networks emerges at criticality on a model of the human connectome.
    Haimovici A; Tagliazucchi E; Balenzuela P; Chialvo DR
    Phys Rev Lett; 2013 Apr; 110(17):178101. PubMed ID: 23679783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical synchronization dynamics of the Kuramoto model on connectome and small world graphs.
    Ódor G; Kelling J
    Sci Rep; 2019 Dec; 9(1):19621. PubMed ID: 31873076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rich club organization and intermodule communication in the cat connectome.
    de Reus MA; van den Heuvel MP
    J Neurosci; 2013 Aug; 33(32):12929-39. PubMed ID: 23926249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rich club organization supports a diverse set of functional network configurations.
    Senden M; Deco G; de Reus MA; Goebel R; van den Heuvel MP
    Neuroimage; 2014 Aug; 96():174-82. PubMed ID: 24699017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Information flow in networks and the law of diminishing marginal returns: evidence from modeling and human electroencephalographic recordings.
    Marinazzo D; Wu G; Pellicoro M; Angelini L; Stramaglia S
    PLoS One; 2012; 7(9):e45026. PubMed ID: 23028745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coarse graining and criticality in the human connectome.
    Kora Y; Simon C
    Phys Rev E; 2024 Apr; 109(4-1):044303. PubMed ID: 38755874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome.
    Gilson M; Moreno-Bote R; Ponce-Alvarez A; Ritter P; Deco G
    PLoS Comput Biol; 2016 Mar; 12(3):e1004762. PubMed ID: 26982185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Rich-Club Organization in Rat Functional Brain Network to Balance Between Communication Cost and Efficiency.
    Liang X; Hsu LM; Lu H; Sumiyoshi A; He Y; Yang Y
    Cereb Cortex; 2018 Mar; 28(3):924-935. PubMed ID: 28108494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relation between structural and functional connectivity patterns in complex brain networks.
    Stam CJ; van Straaten EC; Van Dellen E; Tewarie P; Gong G; Hillebrand A; Meier J; Van Mieghem P
    Int J Psychophysiol; 2016 May; 103():149-60. PubMed ID: 25678023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical dynamics on a large human Open Connectome network.
    Ódor G
    Phys Rev E; 2016 Dec; 94(6-1):062411. PubMed ID: 28085398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling information flow along the human connectome using maximum flow.
    Lyoo Y; Kim JE; Yoon S
    Med Hypotheses; 2018 Jan; 110():155-160. PubMed ID: 29317061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of lesions on synchrony and metastability in cortical networks.
    Váša F; Shanahan M; Hellyer PJ; Scott G; Cabral J; Leech R
    Neuroimage; 2015 Sep; 118():456-67. PubMed ID: 26049146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individual variability in the anatomical distribution of nodes participating in rich club structural networks.
    Kocher M; Gleichgerrcht E; Nesland T; Rorden C; Fridriksson J; Spampinato MV; Bonilha L
    Front Neural Circuits; 2015; 9():16. PubMed ID: 25954161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms.
    Cabral J; Kringelbach ML; Deco G
    Neuroimage; 2017 Oct; 160():84-96. PubMed ID: 28343985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cliques and cavities in the human connectome.
    Sizemore AE; Giusti C; Kahn A; Vettel JM; Betzel RF; Bassett DS
    J Comput Neurosci; 2018 Feb; 44(1):115-145. PubMed ID: 29143250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A connectionist approach to mapping the human connectome permits simulations of neural activity within an artificial brain.
    McNorgan C; Joanisse MF
    Brain Connect; 2014 Feb; 4(1):40-52. PubMed ID: 24117388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Navigation of brain networks.
    Seguin C; van den Heuvel MP; Zalesky A
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6297-6302. PubMed ID: 29848631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ising model with conserved magnetization on the human connectome: Implications on the relation structure-function in wakefulness and anesthesia.
    Stramaglia S; Pellicoro M; Angelini L; Amico E; Aerts H; Cortés JM; Laureys S; Marinazzo D
    Chaos; 2017 Apr; 27(4):047407. PubMed ID: 28456159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.