These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 2470571)
1. The distribution of fibronectin and tenascin along migratory pathways of the neural crest in the trunk of amphibian embryos. Epperlein HH; Halfter W; Tucker RP Development; 1988 Aug; 103(4):743-56. PubMed ID: 2470571 [TBL] [Abstract][Full Text] [Related]
2. The distribution of tenascin coincides with pathways of neural crest cell migration. Mackie EJ; Tucker RP; Halfter W; Chiquet-Ehrismann R; Epperlein HH Development; 1988 Jan; 102(1):237-50. PubMed ID: 2458221 [TBL] [Abstract][Full Text] [Related]
3. Origin and distribution of enteric neurones in Xenopus. Epperlein HH; Krotoski D; Halfter W; Frey A Anat Embryol (Berl); 1990; 182(1):53-67. PubMed ID: 1700645 [TBL] [Abstract][Full Text] [Related]
4. The development of the larval pigment patterns in Triturus alpestris and Ambystoma mexicanum. Epperlein HH; Löfberg J Adv Anat Embryol Cell Biol; 1990; 118():1-99. PubMed ID: 2368640 [TBL] [Abstract][Full Text] [Related]
5. Migratory patterns and developmental potential of trunk neural crest cells in the axolotl embryo. Epperlein HH; Selleck MA; Meulemans D; Mchedlishvili L; Cerny R; Sobkow L; Bronner-Fraser M Dev Dyn; 2007 Feb; 236(2):389-403. PubMed ID: 17183528 [TBL] [Abstract][Full Text] [Related]
6. Effects of extracellular matrix molecules on subepidermal neural crest cell migration in wild type and white mutant (dd) axolotl embryos. Olsson L; Svensson K; Perris R Pigment Cell Res; 1996 Feb; 9(1):18-27. PubMed ID: 8739557 [TBL] [Abstract][Full Text] [Related]
7. Mapping of neural crest pathways in Xenopus laevis using inter- and intra-specific cell markers. Krotoski DM; Fraser SE; Bronner-Fraser M Dev Biol; 1988 May; 127(1):119-32. PubMed ID: 2452101 [TBL] [Abstract][Full Text] [Related]
8. Distribution of integrins and their ligands in the trunk of Xenopus laevis during neural crest cell migration. Krotoski D; Bronner-Fraser M J Exp Zool; 1990 Feb; 253(2):139-50. PubMed ID: 2179461 [TBL] [Abstract][Full Text] [Related]
9. Timing in the regulation of neural crest cell migration: retarded "maturation" of regional extracellular matrix inhibits pigment cell migration in embryos of the white axolotl mutant. Löfberg J; Perris R; Epperlein HH Dev Biol; 1989 Jan; 131(1):168-81. PubMed ID: 2909402 [TBL] [Abstract][Full Text] [Related]
10. Structural and compositional divergencies in the extracellular matrix encountered by neural crest cells in the white mutant axolotl embryo. Perris R; Löfberg J; Fällström C; von Boxberg Y; Olsson L; Newgreen DF Development; 1990 Jul; 109(3):533-51. PubMed ID: 2119290 [TBL] [Abstract][Full Text] [Related]
11. Neural crest migration in 3D extracellular matrix utilizes laminin, fibronectin, or collagen. Bilozur ME; Hay ED Dev Biol; 1988 Jan; 125(1):19-33. PubMed ID: 3275424 [TBL] [Abstract][Full Text] [Related]
12. Fibronectin in early avian embryos: synthesis and distribution along the migration pathways of neural crest cells. Newgreen D; Thiery JP Cell Tissue Res; 1980; 211(2):269-91. PubMed ID: 6998561 [TBL] [Abstract][Full Text] [Related]
13. Fibronectin in early amphibian embryos. Migrating mesodermal cells contact fibronectin established prior to gastrulation. Boucaut JC; Darribere T Cell Tissue Res; 1983; 234(1):135-45. PubMed ID: 6640612 [TBL] [Abstract][Full Text] [Related]
14. Stimulation of initial neural crest cell migration in the axolotl embryo by tissue grafts and extracellular matrix transplanted on microcarriers. Löfberg J; Nynäs-McCoy A; Olsson C; Jönsson L; Perris R Dev Biol; 1985 Feb; 107(2):442-59. PubMed ID: 3972165 [TBL] [Abstract][Full Text] [Related]
15. Pigment cell pattern formation in Taricha torosa: the role of the extracellular matrix in controlling pigment cell migration and differentiation. Tucker RP; Erickson CA Dev Biol; 1986 Nov; 118(1):268-85. PubMed ID: 3770303 [TBL] [Abstract][Full Text] [Related]
16. Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration. Collazo A; Bronner-Fraser M; Fraser SE Development; 1993 Jun; 118(2):363-76. PubMed ID: 7693414 [TBL] [Abstract][Full Text] [Related]
17. Immunohistochemical demonstration of hyaluronan and its possible involvement in axolotl neural crest cell migration. Epperlein HH; Radomski N; Wonka F; Walther P; Wilsch M; Müller M; Schwarz H J Struct Biol; 2000 Oct; 132(1):19-32. PubMed ID: 11121304 [TBL] [Abstract][Full Text] [Related]
18. Distribution and expression of two interactive extracellular matrix proteins, cytotactin and cytotactin-binding proteoglycan, during development of Xenopus laevis. I. Embryonic development. Williamson DA; Parrish EP; Edelman GM J Morphol; 1991 Aug; 209(2):189-202. PubMed ID: 1720464 [TBL] [Abstract][Full Text] [Related]
19. Electron microscopy of the amphibian model systems Xenopus laevis and Ambystoma mexicanum. Kurth T; Berger J; Wilsch-Bräuninger M; Kretschmar S; Cerny R; Schwarz H; Löfberg J; Piendl T; Epperlein HH Methods Cell Biol; 2010; 96():395-423. PubMed ID: 20869532 [TBL] [Abstract][Full Text] [Related]
20. Distribution and function of tenascin during cranial neural crest development in the chick. Bronner-Fraser M J Neurosci Res; 1988; 21(2-4):135-47. PubMed ID: 2464073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]