BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

697 related articles for article (PubMed ID: 24705786)

  • 1. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation.
    Bazzini AA; Johnstone TG; Christiano R; Mackowiak SD; Obermayer B; Fleming ES; Vejnar CE; Lee MT; Rajewsky N; Walther TC; Giraldez AJ
    EMBO J; 2014 May; 33(9):981-93. PubMed ID: 24705786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translation of Small Open Reading Frames: Roles in Regulation and Evolutionary Innovation.
    Ruiz-Orera J; Albà MM
    Trends Genet; 2019 Mar; 35(3):186-198. PubMed ID: 30606460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining in silico prediction and ribosome profiling in a genome-wide search for novel putatively coding sORFs.
    Crappé J; Van Criekinge W; Trooskens G; Hayakawa E; Luyten W; Baggerman G; Menschaert G
    BMC Genomics; 2013 Sep; 14():648. PubMed ID: 24059539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo Identification of Actively Translated Open Reading Frames with Ribosome Profiling Data.
    Zhu Y; Li F; Yang X; Xiao Z
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35253791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Analysis of Actively Translated Open Reading Frames Using RiboTaper/ORFquant.
    Harnett D; Meerdink E; Calviello L; Sydow D; Ohler U
    Methods Mol Biol; 2021; 2252():331-346. PubMed ID: 33765284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. uPEPperoni: an online tool for upstream open reading frame location and analysis of transcript conservation.
    Skarshewski A; Stanton-Cook M; Huber T; Al Mansoori S; Smith R; Beatson SA; Rothnagel JA
    BMC Bioinformatics; 2014 Feb; 15():36. PubMed ID: 24484385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. sORFs.org: a repository of small ORFs identified by ribosome profiling.
    Olexiouk V; Crappé J; Verbruggen S; Verhegen K; Martens L; Menschaert G
    Nucleic Acids Res; 2016 Jan; 44(D1):D324-9. PubMed ID: 26527729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long non-coding RNAs as a source of new peptides.
    Ruiz-Orera J; Messeguer X; Subirana JA; Alba MM
    Elife; 2014 Sep; 3():e03523. PubMed ID: 25233276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Everything old is new again: (linc)RNAs make proteins!
    Cohen SM
    EMBO J; 2014 May; 33(9):937-8. PubMed ID: 24719208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extensive identification and analysis of conserved small ORFs in animals.
    Mackowiak SD; Zauber H; Bielow C; Thiel D; Kutz K; Calviello L; Mastrobuoni G; Rajewsky N; Kempa S; Selbach M; Obermayer B
    Genome Biol; 2015 Sep; 16():179. PubMed ID: 26364619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RibORF: Identifying Genome-Wide Translated Open Reading Frames Using Ribosome Profiling.
    Ji Z
    Curr Protoc Mol Biol; 2018 Oct; 124(1):e67. PubMed ID: 30178897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish.
    Chew GL; Pauli A; Schier AF
    Nat Commun; 2016 May; 7():11663. PubMed ID: 27216465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-deep sequencing of ribosome-associated poly-adenylated RNA in early Drosophila embryos reveals hundreds of conserved translated sORFs.
    Li H; Hu C; Bai L; Li H; Li M; Zhao X; Czajkowsky DM; Shao Z
    DNA Res; 2016 Dec; 23(6):571-580. PubMed ID: 27559081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The extent of ribosome queuing in budding yeast.
    Diament A; Feldman A; Schochet E; Kupiec M; Arava Y; Tuller T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005951. PubMed ID: 29377894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MiPepid: MicroPeptide identification tool using machine learning.
    Zhu M; Gribskov M
    BMC Bioinformatics; 2019 Nov; 20(1):559. PubMed ID: 31703551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-nucleotide periodicity of nucleotide diversity in a population enables the identification of open reading frames.
    Jiang M; Ning W; Wu S; Wang X; Zhu K; Li A; Li Y; Cheng S; Song B
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35698834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation.
    Bazin J; Baerenfaller K; Gosai SJ; Gregory BD; Crespi M; Bailey-Serres J
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E10018-E10027. PubMed ID: 29087317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The coding capacity of SARS-CoV-2.
    Finkel Y; Mizrahi O; Nachshon A; Weingarten-Gabbay S; Morgenstern D; Yahalom-Ronen Y; Tamir H; Achdout H; Stein D; Israeli O; Beth-Din A; Melamed S; Weiss S; Israely T; Paran N; Schwartz M; Stern-Ginossar N
    Nature; 2021 Jan; 589(7840):125-130. PubMed ID: 32906143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying (non-)coding RNAs and small peptides: challenges and opportunities.
    Pauli A; Valen E; Schier AF
    Bioessays; 2015 Jan; 37(1):103-12. PubMed ID: 25345765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translation and natural selection of micropeptides from long non-canonical RNAs.
    Patraquim P; Magny EG; Pueyo JI; Platero AI; Couso JP
    Nat Commun; 2022 Oct; 13(1):6515. PubMed ID: 36316320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.