These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 24706072)

  • 1. Micropillar arrays enabling single microbial cell encapsulation in hydrogels.
    Park KJ; Lee KG; Seok S; Choi BG; Lee MK; Park TJ; Park JY; Kim DH; Lee SJ
    Lab Chip; 2014 Jun; 14(11):1873-9. PubMed ID: 24706072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spherical phospholipid polymer hydrogels for cell encapsulation prepared with a flow-focusing microfluidic channel device.
    Aikawa T; Konno T; Takai M; Ishihara K
    Langmuir; 2012 Jan; 28(4):2145-50. PubMed ID: 22176809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optically clear alginate hydrogels for spatially controlled cell entrapment and culture at microfluidic electrode surfaces.
    Betz JF; Cheng Y; Tsao CY; Zargar A; Wu HC; Luo X; Payne GF; Bentley WE; Rubloff GW
    Lab Chip; 2013 May; 13(10):1854-8. PubMed ID: 23559159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using confined bacteria as building blocks to generate fluid flow.
    Gao Z; Li H; Chen X; Zhang HP
    Lab Chip; 2015 Dec; 15(24):4555-62. PubMed ID: 26496967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable microfluidic patterning of protein gradients on hydrogels.
    Allazetta S; Cosson S; Lutolf MP
    Chem Commun (Camb); 2011 Jan; 47(1):191-3. PubMed ID: 20830358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embedding live bacteria in porous hydrogel/ceramic nanocomposites for bioprocessing applications.
    Condi Mainardi J; Rezwan K; Maas M
    Bioprocess Biosyst Eng; 2019 Jul; 42(7):1215-1224. PubMed ID: 30953175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-micropillar-based microfluidic platform for single embryonic stem cell-derived neuronal differentiation.
    Lee JM; Kim JE; Borana J; Chung BH; Chung BG
    Electrophoresis; 2013 Jul; 34(13):1931-8. PubMed ID: 23977683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An on-chip microfluidic pressure regulator that facilitates reproducible loading of cells and hydrogels into microphysiological system platforms.
    Wang X; Phan DTT; Zhao D; George SC; Hughes CCW; Lee AP
    Lab Chip; 2016 Mar; 16(5):868-876. PubMed ID: 26879519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterning of cell-instructive hydrogels by hydrodynamic flow focusing.
    Cosson S; Allazetta S; Lutolf MP
    Lab Chip; 2013 Jun; 13(11):2099-105. PubMed ID: 23598796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hydrogel-based microfluidic device for the studies of directed cell migration.
    Cheng SY; Heilman S; Wasserman M; Archer S; Shuler ML; Wu M
    Lab Chip; 2007 Jun; 7(6):763-9. PubMed ID: 17538719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatible Hydrogels for Microarray Cell Printing and Encapsulation.
    Datar A; Joshi P; Lee MY
    Biosensors (Basel); 2015 Oct; 5(4):647-63. PubMed ID: 26516921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic bioreactor based on hydrogel-entrapped E. coli: cell viability, lysis, and intracellular enzyme reactions.
    Heo J; Thomas KJ; Seong GH; Crooks RM
    Anal Chem; 2003 Jan; 75(1):22-6. PubMed ID: 12530814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Microfluidic System for One-Chip Harvesting of Single-Cell-Laden Hydrogels in Culture Medium.
    Nan L; Yang Z; Lyu H; Lau KYY; Shum HC
    Adv Biosyst; 2019 Nov; 3(11):e1900076. PubMed ID: 32648695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic viability of Escherichia coli trapped by dielectrophoresis in microfluidics.
    Donato SS; Chu V; Prazeres DM; Conde JP
    Electrophoresis; 2013 Feb; 34(4):575-82. PubMed ID: 23175163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoresponsive double network micropillared hydrogels for controlled cell release.
    Fei R; Hou H; Munoz-Pinto D; Han A; Hahn MS; Grunlan MA
    Macromol Biosci; 2014 Sep; 14(9):1346-52. PubMed ID: 24956117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting.
    Wu L; Chen P; Dong Y; Feng X; Liu BF
    Biomed Microdevices; 2013 Jun; 15(3):553-60. PubMed ID: 23404263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation.
    Braschler T; Johann R; Heule M; Metref L; Renaud P
    Lab Chip; 2005 May; 5(5):553-9. PubMed ID: 15856094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Production of Cell-Laden Microspheres Using a Flexible Microfluidic Encapsulation Platform.
    Seeto WJ; Tian Y; Pradhan S; Kerscher P; Lipke EA
    Small; 2019 Nov; 15(47):e1902058. PubMed ID: 31468632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.