These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 24706214)

  • 1. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions.
    Woo JM; Yang KM; Kim SU; Blank LM; Park JB
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):6085-94. PubMed ID: 24706214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1.
    Zhang MM; Zhao XQ; Cheng C; Bai FW
    Biotechnol J; 2015 Dec; 10(12):1903-11. PubMed ID: 26479519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic flux analysis of Saccharomyces cerevisiae in a sealed winemaking fermentation system.
    Li H; Su J; Ma W; Guo A; Shan Z; Wang H
    FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25757889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production.
    Matsushika A; Sawayama S
    Appl Biochem Biotechnol; 2012 Dec; 168(8):2094-104. PubMed ID: 23076570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash.
    Graves T; Narendranath NV; Dawson K; Power R
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1190-6. PubMed ID: 17058076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.
    Casey E; Sedlak M; Ho NW; Mosier NS
    FEMS Yeast Res; 2010 Jun; 10(4):385-93. PubMed ID: 20402796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene.
    Eglinton JM; Heinrich AJ; Pollnitz AP; Langridge P; Henschke PA; de Barros Lopes M
    Yeast; 2002 Mar; 19(4):295-301. PubMed ID: 11870853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield.
    Zakhartsev M; Yang X; Reuss M; Pörtner HO
    J Therm Biol; 2015 Aug; 52():117-29. PubMed ID: 26267506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122.
    Gonzalez R; Andrews BA; Molitor J; Asenjo JA
    Biotechnol Bioeng; 2003 Apr; 82(2):152-69. PubMed ID: 12584757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms.
    Zhang J; Lynd LR
    Biotechnol Bioeng; 2010 Oct; 107(2):235-44. PubMed ID: 20506488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic responses of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess.
    Van Urk H; Mak PR; Scheffers WA; van Dijken JP
    Yeast; 1988 Dec; 4(4):283-91. PubMed ID: 3064492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.
    Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS
    J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae.
    Heyland J; Fu J; Blank LM
    Microbiology (Reading); 2009 Dec; 155(Pt 12):3827-3837. PubMed ID: 19684065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crabtree-negative characteristics of recombinant xylose-utilizing Saccharomyces cerevisiae.
    Souto-Maior AM; Runquist D; Hahn-Hägerdal B
    J Biotechnol; 2009 Aug; 143(2):119-23. PubMed ID: 19560495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brettanomyces bruxellensis: effect of oxygen on growth and acetic acid production.
    Aguilar Uscanga MG; Délia ML; Strehaiano P
    Appl Microbiol Biotechnol; 2003 Apr; 61(2):157-62. PubMed ID: 12655458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition effect of secondary metabolites accumulated in a pervaporation membrane bioreactor on ethanol fermentation of Saccharomyces cerevisiae.
    Fan S; Xiao Z; Tang X; Chen C; Zhang Y; Deng Q; Yao P; Li W
    Bioresour Technol; 2014 Jun; 162():8-13. PubMed ID: 24727748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J
    BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of mead production using response surface methodology.
    Gomes T; Barradas C; Dias T; Verdial J; Morais JS; Ramalhosa E; Estevinho LM
    Food Chem Toxicol; 2013 Sep; 59():680-6. PubMed ID: 23856495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc.
    Wan C; Zhang M; Fang Q; Xiong L; Zhao X; Hasunuma T; Bai F; Kondo A
    Metallomics; 2015 Feb; 7(2):322-32. PubMed ID: 25554248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and metabolite production of a grape sour rot yeast-bacterium consortium on different carbon sources.
    Pinto L; Malfeito-Ferreira M; Quintieri L; Silva AC; Baruzzi F
    Int J Food Microbiol; 2019 May; 296():65-74. PubMed ID: 30851642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.