These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 24706576)

  • 1. Development of mapped stress-field boundary conditions based on a Hill-type muscle model.
    Cardiff P; Karač A; FitzPatrick D; Flavin R; Ivanković A
    Int J Numer Method Biomed Eng; 2014 Sep; 30(9):890-908. PubMed ID: 24706576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiologically based boundary conditions in finite element modelling.
    Speirs AD; Heller MO; Duda GN; Taylor WR
    J Biomech; 2007; 40(10):2318-23. PubMed ID: 17166504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation.
    Seo JW; Kang DW; Kim JY; Yang ST; Kim DH; Choi JS; Tack GR
    Biomed Mater Eng; 2014; 24(6):2485-93. PubMed ID: 25226949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of muscle loading at the hip joint for use in pre-clinical testing.
    Heller MO; Bergmann G; Kassi JP; Claes L; Haas NP; Duda GN
    J Biomech; 2005 May; 38(5):1155-63. PubMed ID: 15797596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The femur as a musculo-skeletal construct: a free boundary condition modelling approach.
    Phillips AT
    Med Eng Phys; 2009 Jul; 31(6):673-80. PubMed ID: 19201245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur model.
    Polgár K; Gill HS; Viceconti M; Murray DW; O'Connor JJ
    Proc Inst Mech Eng H; 2003; 217(3):173-89. PubMed ID: 12807158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry.
    Bosmans L; Valente G; Wesseling M; Van Campen A; De Groote F; De Schutter J; Jonkers I
    J Biomech; 2015 Jul; 48(10):2116-23. PubMed ID: 25979383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.
    Bogey RA; Perry J; Gitter AJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):302-10. PubMed ID: 16200754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking.
    Fraysse F; Dumas R; Cheze L; Wang X
    J Biomech; 2009 Oct; 42(14):2357-62. PubMed ID: 19699479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of individual muscles to hip joint contact force in normal walking.
    Correa TA; Crossley KM; Kim HJ; Pandy MG
    J Biomech; 2010 May; 43(8):1618-22. PubMed ID: 20176362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous prediction of muscle and contact forces in the knee during gait.
    Lin YC; Walter JP; Banks SA; Pandy MG; Fregly BJ
    J Biomech; 2010 Mar; 43(5):945-52. PubMed ID: 19962703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone remodelling in the natural acetabulum is influenced by muscle force-induced bone stress.
    Fernandez J; Sartori M; Lloyd D; Munro J; Shim V
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):28-41. PubMed ID: 23982908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a hip joint model for finite volume simulations.
    Cardiff P; Karač A; FitzPatrick D; Ivanković A
    J Biomech Eng; 2014 Jan; 136(1):011006. PubMed ID: 24141555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of knee joint muscle forces and tissue stresses-strains during gait in severe OA versus normal subjects.
    Adouni M; Shirazi-Adl A
    J Orthop Res; 2014 Jan; 32(1):69-78. PubMed ID: 24038150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles of determination and verification of muscle forces in the human musculoskeletal system: Muscle forces to minimise bending stress.
    Sverdlova NS; Witzel U
    J Biomech; 2010 Feb; 43(3):387-96. PubMed ID: 19880120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait.
    Michaud F; Lamas M; Lugrís U; Cuadrado J
    J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle and external load contribution to knee joint contact loads during normal gait.
    Winby CR; Lloyd DG; Besier TF; Kirk TB
    J Biomech; 2009 Oct; 42(14):2294-300. PubMed ID: 19647257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement.
    Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S
    J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite element model of the lower limb during stance phase of gait cycle including the muscle forces.
    Diffo Kaze A; Maas S; Arnoux PJ; Wolf C; Pape D
    Biomed Eng Online; 2017 Dec; 16(1):138. PubMed ID: 29212516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.