BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 24706583)

  • 1. Proximal stenosis may induce initiation of cerebral aneurysms by increasing wall shear stress and wall shear stress gradient.
    Kono K; Fujimoto T; Terada T
    Int J Numer Method Biomed Eng; 2014 Oct; 30(10):942-50. PubMed ID: 24706583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo cerebral aneurysm formation associated with proximal stenosis.
    Kono K; Masuo O; Nakao N; Meng H
    Neurosurgery; 2013 Dec; 73(6):E1080-90. PubMed ID: 23839522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON).
    Shimogonya Y; Ishikawa T; Imai Y; Matsuki N; Yamaguchi T
    J Biomech; 2009 Mar; 42(4):550-4. PubMed ID: 19195658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wall shear stress gradient is independently associated with middle cerebral artery aneurysm development: a case-control CFD patient-specific study based on 77 patients.
    Zimny M; Kawlewska E; Hebda A; Wolański W; Ładziński P; Kaspera W
    BMC Neurol; 2021 Jul; 21(1):281. PubMed ID: 34281533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standardized viscosity as a source of error in computational fluid dynamic simulations of cerebral aneurysms.
    Fillingham P; Belur N; Sweem R; Barbour MC; Marsh LMM; Aliseda A; Levitt MR
    Med Phys; 2024 Feb; 51(2):1499-1508. PubMed ID: 38150511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between hemodynamic parameters and cerebral aneurysm initiation.
    Tanaka K; Takao H; Suzuki T; Fujimura S; Uchiyama Y; Otani K; Ishibashi T; Mamori H; Fukudome K; Yamamoto M; Murayama Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1347-1350. PubMed ID: 30440641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wall shear stress at the initiation site of cerebral aneurysms.
    Geers AJ; Morales HG; Larrabide I; Butakoff C; Bijlenga P; Frangi AF
    Biomech Model Mechanobiol; 2017 Feb; 16(1):97-115. PubMed ID: 27440126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of aneurysmogenic high positive wall shear stress gradient by wide angle at cerebral bifurcations, independent of flow rate.
    Lauric A; Hippelheuser JE; Malek AM
    J Neurosurg; 2018 Aug; 131(2):442-452. PubMed ID: 30095336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stagnation and complex flow in ruptured cerebral aneurysms: a possible association with hemostatic pattern.
    Tsuji M; Ishikawa T; Ishida F; Furukawa K; Miura Y; Shiba M; Sano T; Tanemura H; Umeda Y; Shimosaka S; Suzuki H
    J Neurosurg; 2017 May; 126(5):1566-1572. PubMed ID: 27257837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colocalization of thin-walled dome regions with low hemodynamic wall shear stress in unruptured cerebral aneurysms.
    Kadasi LM; Dent WC; Malek AM
    J Neurosurg; 2013 Jul; 119(1):172-9. PubMed ID: 23540271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Curvature effect on hemodynamic conditions at the inner bend of the carotid siphon and its relation to aneurysm formation.
    Lauric A; Hippelheuser J; Safain MG; Malek AM
    J Biomech; 2014 Sep; 47(12):3018-27. PubMed ID: 25062932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.
    Xiang J; Siddiqui AH; Meng H
    J Biomech; 2014 Dec; 47(16):3882-90. PubMed ID: 25446264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress.
    Dolan JM; Meng H; Sim FJ; Kolega J
    Am J Physiol Cell Physiol; 2013 Oct; 305(8):C854-66. PubMed ID: 23885059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis.
    Meng H; Tutino VM; Xiang J; Siddiqui A
    AJNR Am J Neuroradiol; 2014 Jul; 35(7):1254-62. PubMed ID: 23598838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis.
    Wong KKL; Wu J; Liu G; Huang W; Ghista DN
    Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-induced wall mechanics of patient-specific aneurysmal cerebral arteries: Nonlinear isotropic versus anisotropic wall stress.
    Cornejo S; Guzmán A; Valencia A; Rodríguez J; Finol E
    Proc Inst Mech Eng H; 2014 Jan; 228(1):37-48. PubMed ID: 24280227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamics of cerebral aneurysm initiation: the role of wall shear stress and spatial wall shear stress gradient.
    Kulcsár Z; Ugron A; Marosfoi M; Berentei Z; Paál G; Szikora I
    AJNR Am J Neuroradiol; 2011 Mar; 32(3):587-94. PubMed ID: 21310860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamics of Focal Versus Global Growth of Small Cerebral Aneurysms.
    Machi P; Ouared R; Brina O; Bouillot P; Yilmaz H; Vargas MI; Gondar R; Bijlenga P; Lovblad KO; Kulcsár Z
    Clin Neuroradiol; 2019 Jun; 29(2):285-293. PubMed ID: 29209882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.