These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 24706634)
1. Nanostructured titanate with different metal ions on the surface of metallic titanium: a facile approach for regulation of rBMSCs fate on titanium implants. Ren N; Li J; Qiu J; Sang Y; Jiang H; Boughton RI; Huang L; Huang W; Liu H Small; 2014 Aug; 10(15):3169-80. PubMed ID: 24706634 [TBL] [Abstract][Full Text] [Related]
2. Surface Engineering of Nanostructured Titanium Implants with Bioactive Ions. Kim HS; Kim YJ; Jang JH; Park JW J Dent Res; 2016 May; 95(5):558-65. PubMed ID: 26961491 [TBL] [Abstract][Full Text] [Related]
3. Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function. Wang G; Li J; Zhang W; Xu L; Pan H; Wen J; Wu Q; She W; Jiao T; Liu X; Jiang X Int J Nanomedicine; 2014; 9():2387-98. PubMed ID: 24940056 [TBL] [Abstract][Full Text] [Related]
4. Surface engineering of titanium with potassium hydroxide and its effects on the growth behavior of mesenchymal stem cells. Cai K; Lai M; Yang W; Hu R; Xin R; Liu Q; Sung KL Acta Biomater; 2010 Jun; 6(6):2314-21. PubMed ID: 19963080 [TBL] [Abstract][Full Text] [Related]
5. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts. Satué M; Ramis JM; Monjo M J Biomater Appl; 2016 Jan; 30(6):770-9. PubMed ID: 25899927 [TBL] [Abstract][Full Text] [Related]
6. Cell differentiation and osseointegration influenced by nanoscale anodized titanium surfaces. Lavenus S; Trichet V; Le Chevalier S; Hoornaert A; Louarn G; Layrolle P Nanomedicine (Lond); 2012 Jul; 7(7):967-80. PubMed ID: 22394187 [TBL] [Abstract][Full Text] [Related]
7. Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion. Feng B; Weng J; Yang BC; Qu SX; Zhang XD Biomaterials; 2004 Aug; 25(17):3421-8. PubMed ID: 15020115 [TBL] [Abstract][Full Text] [Related]
8. Enhanced differentiation of human osteoblasts on Ti surfaces pre-treated with human whole blood. Kopf BS; Schipanski A; Rottmar M; Berner S; Maniura-Weber K Acta Biomater; 2015 Jun; 19():180-90. PubMed ID: 25818948 [TBL] [Abstract][Full Text] [Related]
9. Effects of calcium ion implantation on human bone cell interaction with titanium. Nayab SN; Jones FH; Olsen I Biomaterials; 2005 Aug; 26(23):4717-27. PubMed ID: 15763251 [TBL] [Abstract][Full Text] [Related]
10. Comparison of biological characteristics of mesenchymal stem cells grown on two different titanium implant surfaces. Wang CY; Zhao BH; Ai HJ; Wang YW Biomed Mater; 2008 Mar; 3(1):015004. PubMed ID: 18458491 [TBL] [Abstract][Full Text] [Related]
11. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Datta N; Holtorf HL; Sikavitsas VI; Jansen JA; Mikos AG Biomaterials; 2005 Mar; 26(9):971-7. PubMed ID: 15369685 [TBL] [Abstract][Full Text] [Related]
12. Bioinspired Quercitrin Nanocoatings: A Fluorescence-Based Method for Their Surface Quantification, and Their Effect on Stem Cell Adhesion and Differentiation to the Osteoblastic Lineage. Córdoba A; Monjo M; Hierro-Oliva M; González-Martín ML; Ramis JM ACS Appl Mater Interfaces; 2015 Aug; 7(30):16857-64. PubMed ID: 26167954 [TBL] [Abstract][Full Text] [Related]
13. Calcium-incorporated titanium surfaces influence the osteogenic differentiation of human mesenchymal stem cells. Sawada R; Kono K; Isama K; Haishima Y; Matsuoka A J Biomed Mater Res A; 2013 Sep; 101(9):2573-85. PubMed ID: 23401369 [TBL] [Abstract][Full Text] [Related]
14. In vivo monitoring of the bone healing process around different titanium alloy implant surfaces placed into fresh extraction sockets. Colombo JS; Satoshi S; Okazaki J; Crean SJ; Sloan AJ; Waddington RJ J Dent; 2012 Apr; 40(4):338-46. PubMed ID: 22307025 [TBL] [Abstract][Full Text] [Related]
15. Enhanced osteogenesis on titanium implants by UVB photofunctionalization of hydrothermally grown TiO₂ coatings. Lorenzetti M; Dakischew O; Trinkaus K; Lips KS; Schnettler R; Kobe S; Novak S J Biomater Appl; 2015 Jul; 30(1):71-84. PubMed ID: 25633960 [TBL] [Abstract][Full Text] [Related]
16. Multilevel surface engineering of nanostructured TiO2 on carbon-fiber-reinforced polyetheretherketone. Lu T; Liu X; Qian S; Cao H; Qiao Y; Mei Y; Chu PK; Ding C Biomaterials; 2014 Jul; 35(22):5731-40. PubMed ID: 24767786 [TBL] [Abstract][Full Text] [Related]
17. The Role of Titanium Surface Nanostructuring on Preosteoblast Morphology, Adhesion, and Migration. Zhukova Y; Hiepen C; Knaus P; Osterland M; Prohaska S; Dunlop JWC; Fratzl P; Skorb EV Adv Healthc Mater; 2017 Aug; 6(15):. PubMed ID: 28371540 [TBL] [Abstract][Full Text] [Related]
18. The osteogenic properties of multipotent mesenchymal stromal cells in cultures on TiO₂ sol-gel-derived biomaterial. Marycz K; Śmieszek A; Grzesiak J; Siudzińska A; Marędziak M; Donesz-Sikorska A; Krzak J Biomed Res Int; 2015; 2015():651097. PubMed ID: 25710015 [TBL] [Abstract][Full Text] [Related]
19. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell. Kim BS; Kim JS; Park YM; Choi BY; Lee J Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1554-60. PubMed ID: 23827608 [TBL] [Abstract][Full Text] [Related]
20. Titania-hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation. Dimitrievska S; Bureau MN; Antoniou J; Mwale F; Petit A; Lima RS; Marple BR J Biomed Mater Res A; 2011 Sep; 98(4):576-88. PubMed ID: 21702080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]