These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
694 related articles for article (PubMed ID: 24706635)
1. Peptide dendrimer-Doxorubicin conjugate-based nanoparticles as an enzyme-responsive drug delivery system for cancer therapy. Zhang C; Pan D; Luo K; She W; Guo C; Yang Y; Gu Z Adv Healthc Mater; 2014 Aug; 3(8):1299-308. PubMed ID: 24706635 [TBL] [Abstract][Full Text] [Related]
2. Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent. Li N; Li N; Yi Q; Luo K; Guo C; Pan D; Gu Z Biomaterials; 2014 Nov; 35(35):9529-45. PubMed ID: 25145854 [TBL] [Abstract][Full Text] [Related]
3. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron-doxorubicin conjugates for cancer therapy. She W; Luo K; Zhang C; Wang G; Geng Y; Li L; He B; Gu Z Biomaterials; 2013 Feb; 34(5):1613-23. PubMed ID: 23195490 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Yang Y; Pan D; Luo K; Li L; Gu Z Biomaterials; 2013 Nov; 34(33):8430-43. PubMed ID: 23896006 [TBL] [Abstract][Full Text] [Related]
5. Dendronized heparin-doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. She W; Li N; Luo K; Guo C; Wang G; Geng Y; Gu Z Biomaterials; 2013 Mar; 34(9):2252-64. PubMed ID: 23298778 [TBL] [Abstract][Full Text] [Related]
6. DOX-loaded peptide dendritic copolymer nanoparticles for combating multidrug resistance by regulating the lysosomal pathway of apoptosis in breast cancer cells. Wang J; Li N; Cao L; Gao C; Zhang Y; Shuai Q; Xie J; Luo K; Yang J; Gu Z J Mater Chem B; 2020 Feb; 8(6):1157-1170. PubMed ID: 31951231 [TBL] [Abstract][Full Text] [Related]
7. A duplex oligodeoxynucleotide-dendrimer bioconjugate as a novel delivery vehicle for doxorubicin in in vivo cancer therapy. Lee IH; Yu MK; Kim IH; Lee JH; Park TG; Jon S J Control Release; 2011 Oct; 155(1):88-95. PubMed ID: 20854858 [TBL] [Abstract][Full Text] [Related]
8. Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery. Lee SJ; Jeong YI; Park HK; Kang DH; Oh JS; Lee SG; Lee HC Int J Nanomedicine; 2015; 10():5489-503. PubMed ID: 26357473 [TBL] [Abstract][Full Text] [Related]
9. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells. He X; Alves CS; Oliveira N; Rodrigues J; Zhu J; Bányai I; Tomás H; Shi X Colloids Surf B Biointerfaces; 2015 Jan; 125():82-9. PubMed ID: 25437067 [TBL] [Abstract][Full Text] [Related]
10. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. Wen S; Liu H; Cai H; Shen M; Shi X Adv Healthc Mater; 2013 Sep; 2(9):1267-76. PubMed ID: 23447549 [TBL] [Abstract][Full Text] [Related]
11. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Zhang C; Pan D; Li J; Hu J; Bains A; Guys N; Zhu H; Li X; Luo K; Gong Q; Gu Z Acta Biomater; 2017 Jun; 55():153-162. PubMed ID: 28259838 [TBL] [Abstract][Full Text] [Related]
12. Development of biodegradable polymeric implants of RGD-modified PEG-PAMAM-DOX conjugates for long-term intratumoral release. Wang K; Zhang X; Zhang L; Qian L; Liu C; Zheng J; Jiang Y Drug Deliv; 2015 May; 22(3):389-99. PubMed ID: 24670095 [TBL] [Abstract][Full Text] [Related]
13. Preparation and in vitro characterization of pluronic-attached polyamidoamine dendrimers for drug delivery. Gu Z; Wang M; Fang Q; Zheng H; Wu F; Lin D; Xu Y; Jin Y Drug Dev Ind Pharm; 2015 May; 41(5):812-8. PubMed ID: 24745851 [TBL] [Abstract][Full Text] [Related]
14. Novel water-soluble and pH-responsive anticancer drug nanocarriers: doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). Chang Y; Meng X; Zhao Y; Li K; Zhao B; Zhu M; Li Y; Chen X; Wang J J Colloid Interface Sci; 2011 Nov; 363(1):403-9. PubMed ID: 21821262 [TBL] [Abstract][Full Text] [Related]
15. Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Lv S; Li M; Tang Z; Song W; Sun H; Liu H; Chen X Acta Biomater; 2013 Dec; 9(12):9330-42. PubMed ID: 23958784 [TBL] [Abstract][Full Text] [Related]
16. Peptide-conjugated PAMAM for targeted doxorubicin delivery to transferrin receptor overexpressed tumors. Han L; Huang R; Liu S; Huang S; Jiang C Mol Pharm; 2010 Dec; 7(6):2156-65. PubMed ID: 20857964 [TBL] [Abstract][Full Text] [Related]
17. Enzyme-responsive multifunctional magnetic nanoparticles for tumor intracellular drug delivery and imaging. Yang Y; Aw J; Chen K; Liu F; Padmanabhan P; Hou Y; Cheng Z; Xing B Chem Asian J; 2011 Jun; 6(6):1381-9. PubMed ID: 21548100 [TBL] [Abstract][Full Text] [Related]
18. In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model. Wong HL; Rauth AM; Bendayan R; Wu XY Eur J Pharm Biopharm; 2007 Mar; 65(3):300-8. PubMed ID: 17156986 [TBL] [Abstract][Full Text] [Related]
19. mPEGylated solanesol micelles as redox-responsive nanocarriers with synergistic anticancer effect. Qin B; Liu L; Wu X; Liang F; Hou T; Pan Y; Song S Acta Biomater; 2017 Dec; 64():211-222. PubMed ID: 28963017 [TBL] [Abstract][Full Text] [Related]
20. Robust PEGylated hyaluronic acid nanoparticles as the carrier of doxorubicin: mineralization and its effect on tumor targetability in vivo. Han HS; Lee J; Kim HR; Chae SY; Kim M; Saravanakumar G; Yoon HY; You DG; Ko H; Kim K; Kwon IC; Park JC; Park JH J Control Release; 2013 Jun; 168(2):105-14. PubMed ID: 23474029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]