BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 24706792)

  • 1. Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo.
    Juhas M; Engelmayr GC; Fontanella AN; Palmer GM; Bursac N
    Proc Natl Acad Sci U S A; 2014 Apr; 111(15):5508-13. PubMed ID: 24706792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered Human Contractile Myofiber Sheets as a Platform for Studies of Skeletal Muscle Physiology.
    Takahashi H; Shimizu T; Okano T
    Sci Rep; 2018 Sep; 8(1):13932. PubMed ID: 30224737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone marrow-derived cells do not engraft into skeletal muscle microvasculature but promote angiogenesis after acute injury.
    Ieronimakis N; Hays A; Reyes M
    Exp Hematol; 2012 Mar; 40(3):238-249.e3. PubMed ID: 22155292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth Factors for Skeletal Muscle Tissue Engineering.
    Syverud BC; VanDusen KW; Larkin LM
    Cells Tissues Organs; 2016; 202(3-4):169-179. PubMed ID: 27825154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of macrophages into engineered skeletal muscle enables enhanced muscle regeneration.
    Juhas M; Abutaleb N; Wang JT; Ye J; Shaikh Z; Sriworarat C; Qian Y; Bursac N
    Nat Biomed Eng; 2018 Dec; 2(12):942-954. PubMed ID: 30581652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of TNF-{alpha} signaling in regeneration of cardiotoxin-injured muscle.
    Chen SE; Gerken E; Zhang Y; Zhan M; Mohan RK; Li AS; Reid MB; Li YP
    Am J Physiol Cell Physiol; 2005 Nov; 289(5):C1179-87. PubMed ID: 16079187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-Term Evaluation of Functional Outcomes Following Rat Volumetric Muscle Loss Injury and Repair.
    Mintz EL; Passipieri JA; Franklin IR; Toscano VM; Afferton EC; Sharma PR; Christ GJ
    Tissue Eng Part A; 2020 Feb; 26(3-4):140-156. PubMed ID: 31578935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Biomimetic Materials for Skeletal Muscle Repair and Regeneration.
    Nakayama KH; Shayan M; Huang NF
    Adv Healthc Mater; 2019 Mar; 8(5):e1801168. PubMed ID: 30725530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury.
    Corona BT; Machingal MA; Criswell T; Vadhavkar M; Dannahower AC; Bergman C; Zhao W; Christ GJ
    Tissue Eng Part A; 2012 Jun; 18(11-12):1213-28. PubMed ID: 22439962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal Muscle Constructs Engineered from Human Embryonic Stem Cell Derived Myogenic Progenitors Exhibit Enhanced Contractile Forces When Differentiated in a Medium Containing EGM-2 Supplements.
    Xu B; Zhang M; Perlingeiro RCR; Shen W
    Adv Biosyst; 2019 Dec; 3(12):e1900005. PubMed ID: 32648685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crosstalk between developing vasculature and optogenetically engineered skeletal muscle improves muscle contraction and angiogenesis.
    Osaki T; Sivathanu V; Kamm RD
    Biomaterials; 2018 Feb; 156():65-76. PubMed ID: 29190499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of implantation on engineered skeletal muscle constructs.
    Williams ML; Kostrominova TY; Arruda EM; Larkin LM
    J Tissue Eng Regen Med; 2013 Jun; 7(6):434-42. PubMed ID: 22328229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid formation of functional muscle in vitro using fibrin gels.
    Huang YC; Dennis RG; Larkin L; Baar K
    J Appl Physiol (1985); 2005 Feb; 98(2):706-13. PubMed ID: 15475606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts.
    Koffler J; Kaufman-Francis K; Shandalov Y; Egozi D; Pavlov DA; Landesberg A; Levenberg S
    Proc Natl Acad Sci U S A; 2011 Sep; 108(36):14789-94. PubMed ID: 21878567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global and local tension measurements in biomimetic skeletal muscle tissues reveals early mechanical homeostasis.
    Hofemeier AD; Limon T; Muenker TM; Wallmeyer B; Jurado A; Afshar ME; Ebrahimi M; Tsukanov R; Oleksiievets N; Enderlein J; Gilbert PM; Betz T
    Elife; 2021 Jan; 10():. PubMed ID: 33459593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative, Label-Free Evaluation of Tissue-Engineered Skeletal Muscle Through Multiphoton Microscopy.
    Syverud BC; Mycek MA; Larkin LM
    Tissue Eng Part C Methods; 2017 Oct; 23(10):616-626. PubMed ID: 28810820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered Human Muscle Tissue from Multilayered Aligned Myofiber Sheets for Studies of Muscle Physiology and Predicting Drug Response.
    Takahashi H; Wakayama H; Nagase K; Shimizu T
    Small Methods; 2023 Feb; 7(2):e2200849. PubMed ID: 36562139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, evaluation, and application of engineered skeletal muscle.
    Juhas M; Ye J; Bursac N
    Methods; 2016 Apr; 99():81-90. PubMed ID: 26455485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury.
    Kesireddy V
    Int J Nanomedicine; 2016; 11():1461-73. PubMed ID: 27114706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of flow, electrical, and mechanical stimulation to promote engineering of striated muscles.
    Rangarajan S; Madden L; Bursac N
    Ann Biomed Eng; 2014 Jul; 42(7):1391-405. PubMed ID: 24366526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.