These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 24706830)

  • 21. The operant and the classical in conditioned orientation of Drosophila melanogaster at the flight simulator.
    Brembs B; Heisenberg M
    Learn Mem; 2000; 7(2):104-15. PubMed ID: 10753977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Olfactory Behaviors Assayed by Computer Tracking Of Drosophila in a Four-quadrant Olfactometer.
    Lin CC; Riabinina O; Potter CJ
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27585032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial Comparisons of Mechanosensory Information Govern the Grooming Sequence in Drosophila.
    Zhang N; Guo L; Simpson JH
    Curr Biol; 2020 Mar; 30(6):988-1001.e4. PubMed ID: 32142695
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-Photon Optogenetic Stimulation of Drosophila Neurons.
    Fişek M; Jeanne JM
    Methods Mol Biol; 2021; 2191():97-108. PubMed ID: 32865741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous recording of calcium signals from identified neurons and feeding behavior of Drosophila melanogaster.
    Yoshihara M
    J Vis Exp; 2012 Apr; (62):. PubMed ID: 22565656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optogenetic Manipulation of Neuronal Activity to Modulate Behavior in Freely Moving Mice.
    Berg L; Gerdey J; Masseck OA
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila.
    Bath DE; Stowers JR; Hörmann D; Poehlmann A; Dickson BJ; Straw AD
    Nat Methods; 2014 Jul; 11(7):756-62. PubMed ID: 24859752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificial Induction of Associative Olfactory Memory by Optogenetic and Thermogenetic Activation of Olfactory Sensory Neurons and Octopaminergic Neurons in Drosophila Larvae.
    Honda T; Lee CY; Honjo K; Furukubo-Tokunaga K
    Front Behav Neurosci; 2016; 10():137. PubMed ID: 27445732
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A method for combining multiple-units readout of optogenetic control with natural stimulation-evoked eyeblink conditioning in freely-moving mice.
    Zhang J; Zhang KY; Zhang LB; Zhang WW; Feng H; Yao ZX; Hu B; Chen H
    Sci Rep; 2019 Feb; 9(1):1857. PubMed ID: 30755637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. optoPAD, a closed-loop optogenetics system to study the circuit basis of feeding behaviors.
    Moreira JM; Itskov PM; Goldschmidt D; Baltazar C; Steck K; Tastekin I; Walker SJ; Ribeiro C
    Elife; 2019 Jun; 8():. PubMed ID: 31226244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aversive conditioning information transmission in Drosophila.
    Wu MS; Liao TW; Wu CY; Hsieh TH; Kuo PC; Li YC; Cheng KC; Chiang HC
    Cell Rep; 2023 Oct; 42(10):113207. PubMed ID: 37782557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual experience drives sleep need in Drosophila.
    Kirszenblat L; Yaun R; van Swinderen B
    Sleep; 2019 Jul; 42(7):. PubMed ID: 31100151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlling the behaviour of Drosophila melanogaster via smartphone optogenetics.
    Meloni I; Sachidanandan D; Thum AS; Kittel RJ; Murawski C
    Sci Rep; 2020 Oct; 10(1):17614. PubMed ID: 33077824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optogenetic control of fly optomotor responses.
    Haikala V; Joesch M; Borst A; Mauss AS
    J Neurosci; 2013 Aug; 33(34):13927-34. PubMed ID: 23966712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activity-dependent visualization and control of neural circuits for courtship behavior in the fly
    Takayanagi-Kiya S; Kiya T
    Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5715-5720. PubMed ID: 30837311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Appetitive and aversive visual learning in freely moving Drosophila.
    Schnaitmann C; Vogt K; Triphan T; Tanimoto H
    Front Behav Neurosci; 2010; 4():10. PubMed ID: 20300462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Photoconvertible Fluorescent Probe, CaMPARI, Labels Active Neurons in Freely-Moving Intact Adult Fruit Flies.
    Edwards KA; Hoppa MB; Bosco G
    Front Neural Circuits; 2020; 14():22. PubMed ID: 32457580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A pair of ascending neurons in the subesophageal zone mediates aversive sensory inputs-evoked backward locomotion in Drosophila larvae.
    Omamiuda-Ishikawa N; Sakai M; Emoto K
    PLoS Genet; 2020 Nov; 16(11):e1009120. PubMed ID: 33137117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual projection neurons in the
    Wu M; Nern A; Williamson WR; Morimoto MM; Reiser MB; Card GM; Rubin GM
    Elife; 2016 Dec; 5():. PubMed ID: 28029094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Light, heat, action: neural control of fruit fly behaviour.
    Owald D; Lin S; Waddell S
    Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1677):20140211. PubMed ID: 26240426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.