These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 24706897)
1. Sumoylation differentially regulates Sp1 to control cell differentiation. Gong L; Ji WK; Hu XH; Hu WF; Tang XC; Huang ZX; Li L; Liu M; Xiang SH; Wu E; Woodward Z; Liu YZ; Nguyen QD; Li DW Proc Natl Acad Sci U S A; 2014 Apr; 111(15):5574-9. PubMed ID: 24706897 [TBL] [Abstract][Full Text] [Related]
2. SENP3 regulates the global protein turnover and the Sp1 level via antagonizing SUMO2/3-targeted ubiquitination and degradation. Wang M; Sang J; Ren Y; Liu K; Liu X; Zhang J; Wang H; Wang J; Orian A; Yang J; Yi J Protein Cell; 2016 Jan; 7(1):63-77. PubMed ID: 26511642 [TBL] [Abstract][Full Text] [Related]
3. Spatiotemporal distribution of SUMOylation components during mouse brain development. Hasegawa Y; Yoshida D; Nakamura Y; Sakakibara S J Comp Neurol; 2014 Sep; 522(13):3020-36. PubMed ID: 24639124 [TBL] [Abstract][Full Text] [Related]
4. HIF-1α SUMOylation affects the stability and transcriptional activity of HIF-1α in human lens epithelial cells. Han X; Wang XL; Li Q; Dong XX; Zhang JS; Yan QC Graefes Arch Clin Exp Ophthalmol; 2015 Aug; 253(8):1279-90. PubMed ID: 25877955 [TBL] [Abstract][Full Text] [Related]
5. SUMO2 and SUMO3 transcription is differentially regulated by oxidative stress in an Sp1-dependent manner. Sang J; Yang K; Sun Y; Han Y; Cang H; Chen Y; Shi G; Wang K; Zhou J; Wang X; Yi J Biochem J; 2011 Apr; 435(2):489-98. PubMed ID: 21291420 [TBL] [Abstract][Full Text] [Related]
6. SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes. Balasubramaniyan N; Luo Y; Sun AQ; Suchy FJ J Biol Chem; 2013 May; 288(19):13850-62. PubMed ID: 23546875 [TBL] [Abstract][Full Text] [Related]
7. SUMO paralogue-specific functions revealed through systematic analysis of human knockout cell lines and gene expression data. Bouchard D; Wang W; Yang WC; He S; Garcia A; Matunis MJ Mol Biol Cell; 2021 Sep; 32(19):1849-1866. PubMed ID: 34232706 [TBL] [Abstract][Full Text] [Related]
8. Paralogue-Specific Roles of SUMO1 and SUMO2/3 in Protein Quality Control and Associated Diseases. Wang W; Matunis MJ Cells; 2023 Dec; 13(1):. PubMed ID: 38201212 [TBL] [Abstract][Full Text] [Related]
9. Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Saracco SA; Miller MJ; Kurepa J; Vierstra RD Plant Physiol; 2007 Sep; 145(1):119-34. PubMed ID: 17644626 [TBL] [Abstract][Full Text] [Related]
10. Assessing the Role of Paralog-Specific Sumoylation of HDAC1. Citro S; Chiocca S Methods Mol Biol; 2017; 1510():329-337. PubMed ID: 27761832 [TBL] [Abstract][Full Text] [Related]
11. Ang II Promotes SUMO2/3 Modification of RhoGDI1 Through Aos1 and Uba2 Subunits, and then Regulates RhoGDI1 Stability and Cell Proliferation. Qi Y; Guan H; Liang X; Sun J; Yao W Cardiovasc Drugs Ther; 2021 Aug; 35(4):769-773. PubMed ID: 33891248 [TBL] [Abstract][Full Text] [Related]
12. Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Meulmeester E; Kunze M; Hsiao HH; Urlaub H; Melchior F Mol Cell; 2008 Jun; 30(5):610-9. PubMed ID: 18538659 [TBL] [Abstract][Full Text] [Related]
13. High glucose induces sumoylation of Smad4 via SUMO2/3 in mesangial cells. Zhou X; Gao C; Huang W; Yang M; Chen G; Jiang L; Gou F; Feng H; Ai N; Xu Y Biomed Res Int; 2014; 2014():782625. PubMed ID: 24971350 [TBL] [Abstract][Full Text] [Related]
14. A role for paralog-specific sumoylation in histone deacetylase 1 stability. Citro S; Jaffray E; Hay RT; Seiser C; Chiocca S J Mol Cell Biol; 2013 Dec; 5(6):416-27. PubMed ID: 24068740 [TBL] [Abstract][Full Text] [Related]
15. Ginkgolic Acid Rescues Lens Epithelial Cells from Injury Caused by Redox Regulated-Aberrant Sumoylation Signaling by Reviving Prdx6 and Sp1 Expression and Activities. Chhunchha B; Singh P; Singh DP; Kubo E Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30413111 [TBL] [Abstract][Full Text] [Related]
16. Identification of small ubiquitin-like modifier substrates with diverse functions using the Xenopus egg extract system. Ma L; Aslanian A; Sun H; Jin M; Shi Y; Yates JR; Hunter T Mol Cell Proteomics; 2014 Jul; 13(7):1659-75. PubMed ID: 24797264 [TBL] [Abstract][Full Text] [Related]
17. Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. Gocke CB; Yu H; Kang J J Biol Chem; 2005 Feb; 280(6):5004-12. PubMed ID: 15561718 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional regulation of the hypoxia inducible factor-2alpha (HIF-2alpha) gene during adipose differentiation in 3T3-L1 cells. Wada T; Shimba S; Tezuka M Biol Pharm Bull; 2006 Jan; 29(1):49-54. PubMed ID: 16394508 [TBL] [Abstract][Full Text] [Related]
19. p53 directly regulates αA- and βA3/A1-crystallin genes to modulate lens differentiation. Ji WK; Tang XC; Yi M; Chen PQ; Liu FY; Hu XH; Hu WF; Fu SJ; Liu JF; Wu KL; Wu MX; Liu XL; Luo LX; Huang S; Liu ZZ; Yu MB; Liu YZ; Li DW Curr Mol Med; 2013 Jul; 13(6):968-78. PubMed ID: 23745585 [TBL] [Abstract][Full Text] [Related]
20. Sp1 family of transcription factors regulates the human alpha2 (XI) collagen gene (COL11A2) in Saos-2 osteoblastic cells. Goto T; Matsui Y; Fernandes RJ; Hanson DA; Kubo T; Yukata K; Michigami T; Komori T; Fujita T; Yang L; Eyre DR; Yasui N J Bone Miner Res; 2006 May; 21(5):661-73. PubMed ID: 16734381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]