These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24706911)

  • 1. Crystal structure of PhnZ in complex with substrate reveals a di-iron oxygenase mechanism for catabolism of organophosphonates.
    van Staalduinen LM; McSorley FR; Schiessl K; Séguin J; Wyatt PB; Hammerschmidt F; Zechel DL; Jia Z
    Proc Natl Acad Sci U S A; 2014 Apr; 111(14):5171-6. PubMed ID: 24706911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-H Bond Cleavage Is Rate-Limiting for Oxidative C-P Bond Cleavage by the Mixed Valence Diiron-Dependent Oxygenase PhnZ.
    Gama SR; Lo BSY; Séguin J; Pallitsch K; Hammerschmidt F; Zechel DL
    Biochemistry; 2019 Dec; 58(52):5271-5280. PubMed ID: 31046250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organophosphonate-degrading PhnZ reveals an emerging family of HD domain mixed-valent diiron oxygenases.
    Wörsdörfer B; Lingaraju M; Yennawar NH; Boal AK; Krebs C; Bollinger JM; Pandelia ME
    Proc Natl Acad Sci U S A; 2013 Nov; 110(47):18874-9. PubMed ID: 24198335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PhnY and PhnZ comprise a new oxidative pathway for enzymatic cleavage of a carbon-phosphorus bond.
    McSorley FR; Wyatt PB; Martinez A; DeLong EF; Hove-Jensen B; Zechel DL
    J Am Chem Soc; 2012 May; 134(20):8364-7. PubMed ID: 22564006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domain Fusion of Two Oxygenases Affords Organophosphonate Degradation in Pathogenic Fungi.
    Langton M; Appell M; Koob J; Pandelia ME
    Biochemistry; 2022 Jun; 61(11):956-962. PubMed ID: 35506879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New Microbial Pathway for Organophosphonate Degradation Catalyzed by Two Previously Misannotated Non-Heme-Iron Oxygenases.
    Rajakovich LJ; Pandelia ME; Mitchell AJ; Chang WC; Zhang B; Boal AK; Krebs C; Bollinger JM
    Biochemistry; 2019 Mar; 58(12):1627-1647. PubMed ID: 30789718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insight into the substrate- and dioxygen-binding manner in the catalytic cycle of rieske nonheme iron oxygenase system, carbazole 1,9a-dioxygenase.
    Ashikawa Y; Fujimoto Z; Usami Y; Inoue K; Noguchi H; Yamane H; Nojiri H
    BMC Struct Biol; 2012 Jun; 12():15. PubMed ID: 22727022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of an orphan cupin protein from Burkholderia xenovorans reveals a mononuclear nonheme Fe2+-dependent oxygenase that cleaves beta-diketones.
    Leitgeb S; Straganz GD; Nidetzky B
    FEBS J; 2009 Oct; 276(20):5983-97. PubMed ID: 19754880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the substrate binding mode to the active site iron of (S)-2-hydroxypropylphosphonic acid epoxidase using 17O-enriched substrates and substrate analogues.
    Yan F; Moon SJ; Liu P; Zhao Z; Lipscomb JD; Liu A; Liu HW
    Biochemistry; 2007 Nov; 46(44):12628-38. PubMed ID: 17927218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for the erythro-stereospecificity of the L-arginine oxygenase VioC in viomycin biosynthesis.
    Helmetag V; Samel SA; Thomas MG; Marahiel MA; Essen LO
    FEBS J; 2009 Jul; 276(13):3669-82. PubMed ID: 19490124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gentisate 1,2-dioxygenase from Pseudomonas. Substrate coordination to active site Fe2+ and mechanism of turnover.
    Harpel MR; Lipscomb JD
    J Biol Chem; 1990 Dec; 265(36):22187-96. PubMed ID: 2266121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a substrate complex of myo-inositol oxygenase, a di-iron oxygenase with a key role in inositol metabolism.
    Brown PM; Caradoc-Davies TT; Dickson JM; Cooper GJ; Loomes KM; Baker EN
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15032-7. PubMed ID: 17012379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A common late-stage intermediate in catalysis by 2-hydroxyethyl-phosphonate dioxygenase and methylphosphonate synthase.
    Peck SC; Chekan JR; Ulrich EC; Nair SK; van der Donk WA
    J Am Chem Soc; 2015 Mar; 137(9):3217-20. PubMed ID: 25699631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for distinct rate-limiting steps in the cleavage of alkenes by carotenoid cleavage dioxygenases.
    Khadka N; Farquhar ER; Hill HE; Shi W; von Lintig J; Kiser PD
    J Biol Chem; 2019 Jul; 294(27):10596-10606. PubMed ID: 31138651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphonate biosynthesis and catabolism: a treasure trove of unusual enzymology.
    Peck SC; van der Donk WA
    Curr Opin Chem Biol; 2013 Aug; 17(4):580-8. PubMed ID: 23870698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of alpha-lytic protease complexes with irreversibly bound phosphonate esters.
    Bone R; Sampson NS; Bartlett PA; Agard DA
    Biochemistry; 1991 Feb; 30(8):2263-72. PubMed ID: 1998685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway for phosphonate degradation.
    Podzelinska K; He SM; Wathier M; Yakunin A; Proudfoot M; Hove-Jensen B; Zechel DL; Jia Z
    J Biol Chem; 2009 Jun; 284(25):17216-17226. PubMed ID: 19366688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial Steps in Methanobactin Biosynthesis: Substrate Binding by the Mixed-Valent Diiron Enzyme MbnBC.
    Jodts RJ; Ho MB; Reyes RM; Park YJ; Doan PE; Rosenzweig AC; Hoffman BM
    Biochemistry; 2024 May; 63(9):1170-1177. PubMed ID: 38587906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate binding mechanism of a type I extradiol dioxygenase.
    Cho HJ; Kim K; Sohn SY; Cho HY; Kim KJ; Kim MH; Kim D; Kim E; Kang BS
    J Biol Chem; 2010 Nov; 285(45):34643-52. PubMed ID: 20810655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epoxidation Catalyzed by the Nonheme Iron(II)- and 2-Oxoglutarate-Dependent Oxygenase, AsqJ: Mechanistic Elucidation of Oxygen Atom Transfer by a Ferryl Intermediate.
    Li J; Liao HJ; Tang Y; Huang JL; Cha L; Lin TS; Lee JL; Kurnikov IV; Kurnikova MG; Chang WC; Chan NL; Guo Y
    J Am Chem Soc; 2020 Apr; 142(13):6268-6284. PubMed ID: 32131594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.