These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24707968)

  • 1. Synthesis of 1,1-disubstituted tetrahydroisoquinolines by lithiation and substitution, with in situ IR spectroscopy and configurational stability studies.
    Li X; Coldham I
    J Am Chem Soc; 2014 Apr; 136(15):5551-4. PubMed ID: 24707968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of 1-substituted tetrahydroisoquinolines by lithiation and electrophilic quenching guided by in situ IR and NMR spectroscopy and application to the synthesis of salsolidine, carnegine and laudanosine.
    Li X; Leonori D; Sheikh NS; Coldham I
    Chemistry; 2013 Jun; 19(24):7724-30. PubMed ID: 23677770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of substituted tetrahydroisoquinolines by lithiation then electrophilic quench.
    Talk RA; Duperray A; Li X; Coldham I
    Org Biomol Chem; 2016 Jun; 14(21):4908-17. PubMed ID: 27169500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of 1-Substituted Tetrahydro-β-carbolines by Lithiation-Substitution.
    Cochrane EJ; Hassall LA; Coldham I
    J Org Chem; 2015 Jun; 80(11):5964-9. PubMed ID: 25974712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental and in situ IR spectroscopic study of the lithiation-substitution of N-Boc-2-phenylpyrrolidine and -piperidine: controlling the formation of quaternary stereocenters.
    Sheikh NS; Leonori D; Barker G; Firth JD; Campos KR; Meijer AJ; O'Brien P; Coldham I
    J Am Chem Soc; 2012 Mar; 134(11):5300-8. PubMed ID: 22339321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Enantiopure Piperazines via Asymmetric Lithiation-Trapping of N-Boc Piperazines: Unexpected Role of the Electrophile and Distal N-Substituent.
    Firth JD; O'Brien P; Ferris L
    J Am Chem Soc; 2016 Jan; 138(2):651-9. PubMed ID: 26683825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of 1,2,3,4-tetrahydroisoquinolines by microreactor-mediated thermal isomerization of laterally lithiated arylaziridines.
    Giovine A; Musio B; Degennaro L; Falcicchio A; Nagaki A; Yoshida J; Luisi R
    Chemistry; 2013 Feb; 19(6):1872-6. PubMed ID: 23322634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of optically active arylaziridines by regio- and stereospecific lithiation of N-bus-phenylaziridine.
    Musio B; Clarkson GJ; Shipman M; Florio S; Luisi R
    Org Lett; 2009 Jan; 11(2):325-8. PubMed ID: 19086905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-Lithio-3,3-dimethyl-2-oxazolinyloxirane: carbanion or azaenolate? Structure, configurational stability, and stereodynamics in solution.
    Capriati V; Florio S; Luisi R; Perna FM; Spina A
    J Org Chem; 2008 Dec; 73(24):9552-64. PubMed ID: 19006370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and kinetic resolution of substituted tetrahydroquinolines by lithiation then electrophilic quench.
    Carter N; Li X; Reavey L; Meijer AJHM; Coldham I
    Chem Sci; 2018 Feb; 9(5):1352-1357. PubMed ID: 29675183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex-induced proximity effects: the effect of varying directing-group orientation on carbamate-directed lithiation reactions.
    Gross KM; Beak P
    J Am Chem Soc; 2001 Jan; 123(2):315-21. PubMed ID: 11456518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric Synthesis of 2-Arylindolines and 2,2-Disubstituted Indolines by Kinetic Resolution.
    Choi A; El-Tunsi A; Wang Y; Meijer AJHM; Li J; Li X; Proietti Silvestri I; Coldham I
    Chemistry; 2021 Aug; 27(45):11670-11675. PubMed ID: 34110662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereocontrolled lithiation/trapping of chiral 2-alkylideneaziridines: investigation into the role of the aziridine nitrogen stereodynamics.
    Mansueto R; Degennaro L; Brière JF; Griffin K; Shipman M; Florio S; Luisi R
    Org Biomol Chem; 2014 Nov; 12(42):8505-11. PubMed ID: 25232795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium choreography: intramolecular arylations of carbamate-stabilised carbanions and their mechanisms probed by in situ IR spectroscopy and DFT calculations.
    Fournier AM; Nichols CJ; Vincent MA; Hillier IH; Clayden J
    Chemistry; 2012 Dec; 18(51):16478-90. PubMed ID: 23097264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-line reaction monitoring of lithiation of halogen substituted acetanilides via in situ calorimetry, ATR spectroscopy, and endoscopy.
    Godany TA; Neuhold YM; Hungerbühler K
    Chimia (Aarau); 2011; 65(4):253-5. PubMed ID: 21678773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric synthesis of tetrahydroisoquinolines by enzymatic Pictet-Spengler reaction.
    Nishihachijo M; Hirai Y; Kawano S; Nishiyama A; Minami H; Katayama T; Yasohara Y; Sato F; Kumagai H
    Biosci Biotechnol Biochem; 2014; 78(4):701-7. PubMed ID: 25036970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Phenomena and Complexation Effects in the α-Lithiation and Asymmetric Functionalization of Azetidines.
    Musci P; Colella M; Altomare A; Romanazzi G; Sheikh NS; Degennaro L; Luisi R
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of 8-Fluoro-3,4-dihydroisoquinoline and Its Transformation to 1,8-Disubstituted Tetrahydroisoquinolines.
    Hargitai C; Nagy T; Halász J; Simig G; Volk B
    Molecules; 2018 May; 23(6):. PubMed ID: 29861464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient and highly selective synthesis of enantiopure cis- or trans-3,4-disubstituted 1,2,3,4-tetrahydroisoquinolines.
    Concellón JM; Tuya P; del Solar V; García-Granda S; Díaz MR
    Org Lett; 2009 Aug; 11(16):3750-3. PubMed ID: 19627107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and mechanism of the (-)-sparteine-mediated deprotonation of (E)-N-Boc-N-(p-methoxyphenyl)-3-cyclohexylallylamine.
    Pippel DJ; Weisenburger GA; Faibish NC; Beak P
    J Am Chem Soc; 2001 May; 123(21):4919-27. PubMed ID: 11457318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.