These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24707976)

  • 21. Salient-but-irrelevant stimuli cause attentional capture in difficult, but attentional suppression in easy visual search.
    Barras C; Kerzel D
    Psychophysiology; 2017 Dec; 54(12):1826-1838. PubMed ID: 28752665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selecting and ignoring salient objects within and across dimensions in visual search.
    Schubö A; Müller HJ
    Brain Res; 2009 Aug; 1283():84-101. PubMed ID: 19501066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relative saliency affects attentional capture and suppression of color and face singleton distractors: evidence from event-related potential studies.
    Zhang Y; Zhang H; Fu S
    Cereb Cortex; 2024 Apr; 34(4):. PubMed ID: 38679483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brain structures involved in visual search in the presence and absence of color singletons.
    Talsma D; Coe B; Munoz DP; Theeuwes J
    J Cogn Neurosci; 2010 Apr; 22(4):761-74. PubMed ID: 19309291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Attentional processing of multiple targets and distractors.
    Munneke J; Fait E; Mazza V
    Psychophysiology; 2013 Nov; 50(11):1104-8. PubMed ID: 23902254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attentional capture is modulated by stimulus saliency in visual search as evidenced by event-related potentials and alpha oscillations.
    Forschack N; Gundlach C; Hillyard S; Müller MM
    Atten Percept Psychophys; 2023 Apr; 85(3):685-704. PubMed ID: 36525202
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Attentional capture by visual singletons is mediated by top-down task set: new evidence from the N2pc component.
    Kiss M; Jolicoeur P; Dell'acqua R; Eimer M
    Psychophysiology; 2008 Nov; 45(6):1013-24. PubMed ID: 18801016
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrophysiological evidence of multitasking impairment of attentional deployment reflects target-specific processing, not distractor inhibition.
    Corriveau I; Fortier-Gauthier U; Pomerleau VJ; McDonald J; Dell'acqua R; Jolicoeur P
    Int J Psychophysiol; 2012 Nov; 86(2):152-9. PubMed ID: 22732349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. P
    Drisdelle BL; Eimer M
    Psychophysiology; 2021 Sep; 58(9):e13878. PubMed ID: 34110022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capture versus suppression of attention by salient singletons: electrophysiological evidence for an automatic attend-to-me signal.
    Sawaki R; Luck SJ
    Atten Percept Psychophys; 2010 Aug; 72(6):1455-70. PubMed ID: 20675793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of attentional allocation to targets and distractors during visual search.
    Forschack N; Gundlach C; Hillyard S; Müller MM
    Neuroimage; 2022 Dec; 264():119759. PubMed ID: 36417950
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference.
    Barras C; Kerzel D
    Biol Psychol; 2016 Dec; 121(Pt A):74-83. PubMed ID: 27756581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Steady-state signatures of visual perceptual load, multimodal distractor filtering, and neural competition.
    Parks NA; Hilimire MR; Corballis PM
    J Cogn Neurosci; 2011 May; 23(5):1113-24. PubMed ID: 20146614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Colour-specific differences in attentional deployment for equiluminant pop-out colours: evidence from lateralised potentials.
    Pomerleau VJ; Fortier-Gauthier U; Corriveau I; Dell'Acqua R; Jolicœur P
    Int J Psychophysiol; 2014 Mar; 91(3):194-205. PubMed ID: 24188915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rewarded visual items capture attention only in heterogeneous contexts.
    Feldmann-Wüstefeld T; Brandhofer R; Schubö A
    Psychophysiology; 2016 Jul; 53(7):1063-73. PubMed ID: 26997364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The amplitude of N2pc reflects the physical disparity between target item and distracters.
    Zhao G; Liu Q; Zhang Y; Jiao J; Zhang Q; Sun H; Li H
    Neurosci Lett; 2011 Mar; 491(1):68-72. PubMed ID: 21215298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Speed of Serial Attention Shifts in Visual Search: Evidence from the N2pc Component.
    Grubert A; Eimer M
    J Cogn Neurosci; 2016 Feb; 28(2):319-32. PubMed ID: 26488588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Attentional resources and pop-out detection in search displays.
    Schubö A; Schröger E; Meinecke C; Müller HJ
    Neuroreport; 2007 Oct; 18(15):1589-93. PubMed ID: 17885607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Attentional systems in target and distractor processing: a combined ERP and fMRI study.
    Bledowski C; Prvulovic D; Goebel R; Zanella FE; Linden DE
    Neuroimage; 2004 Jun; 22(2):530-40. PubMed ID: 15193581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of target localization in visual change detection: an interplay of gating and filtering.
    Schneider D; Wascher E
    Behav Brain Res; 2013 Nov; 256():311-9. PubMed ID: 24001756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.