These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 24708257)
1. Electrochemical monitoring of single nanoparticle collisions at mercury-modified platinum ultramicroelectrodes. Dasari R; Tai K; Robinson DA; Stevenson KJ ACS Nano; 2014 May; 8(5):4539-46. PubMed ID: 24708257 [TBL] [Abstract][Full Text] [Related]
2. Influence of the redox indicator reaction on single-nanoparticle collisions at mercury- and bismuth-modified Pt ultramicroelectrodes. Dasari R; Walther B; Robinson DA; Stevenson KJ Langmuir; 2013 Dec; 29(48):15100-6. PubMed ID: 24188022 [TBL] [Abstract][Full Text] [Related]
3. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles. Dasari R; Robinson DA; Stevenson KJ J Am Chem Soc; 2013 Jan; 135(2):570-3. PubMed ID: 23270578 [TBL] [Abstract][Full Text] [Related]
4. Observation of single metal nanoparticle collisions by open circuit (mixed) potential changes at an ultramicroelectrode. Zhou H; Park JH; Fan FR; Bard AJ J Am Chem Soc; 2012 Aug; 134(32):13212-5. PubMed ID: 22839524 [TBL] [Abstract][Full Text] [Related]
5. Potential-controlled current responses from staircase to blip in single Pt nanoparticle collisions on a Ni ultramicroelectrode. Jung AR; Lee S; Joo JW; Shin C; Bae H; Moon SG; Kwon SJ J Am Chem Soc; 2015 Feb; 137(5):1762-5. PubMed ID: 25607323 [TBL] [Abstract][Full Text] [Related]
6. Observation of Single Pt Nanoparticle Collisions: Enhanced Electrocatalytic Activity on a Pd Ultramicroelectrode. Shin C; Park TE; Park C; Kwon SJ Chemphyschem; 2016 Jun; 17(11):1637-41. PubMed ID: 26955784 [TBL] [Abstract][Full Text] [Related]
7. Observing iridium oxide (IrO(x)) single nanoparticle collisions at ultramicroelectrodes. Kwon SJ; Fan FR; Bard AJ J Am Chem Soc; 2010 Sep; 132(38):13165-7. PubMed ID: 20809574 [TBL] [Abstract][Full Text] [Related]
8. Tunneling ultramicroelectrode: nanoelectrodes and nanoparticle collisions. Kim J; Kim BK; Cho SK; Bard AJ J Am Chem Soc; 2014 Jun; 136(23):8173-6. PubMed ID: 24857267 [TBL] [Abstract][Full Text] [Related]
9. Pt Nanoparticle Collisions Detected by Electrocatalytic Amplification and Atomic Force Microscopy Imaging: Nanoparticle Collision Frequency, Adsorption, and Random Distribution at an Ultramicroelectrode Surface. Ortiz-Ledón CA; Zoski CG Anal Chem; 2017 Jun; 89(12):6424-6431. PubMed ID: 28541030 [TBL] [Abstract][Full Text] [Related]
10. Analysis of diffusion-controlled stochastic events of iridium oxide single nanoparticle collisions by scanning electrochemical microscopy. Kwon SJ; Bard AJ J Am Chem Soc; 2012 Apr; 134(16):7102-8. PubMed ID: 22452267 [TBL] [Abstract][Full Text] [Related]
11. DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. Kwon SJ; Bard AJ J Am Chem Soc; 2012 Jul; 134(26):10777-9. PubMed ID: 22702801 [TBL] [Abstract][Full Text] [Related]
12. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions. Mun SK; Lee S; Kim DY; Kwon SJ Chem Asian J; 2017 Sep; 12(18):2434-2440. PubMed ID: 28662286 [TBL] [Abstract][Full Text] [Related]
13. Influence of hydrazine-induced aggregation on the electrochemical detection of platinum nanoparticles. Kleijn SE; Serrano-Bou B; Yanson AI; Koper MT Langmuir; 2013 Feb; 29(6):2054-64. PubMed ID: 23320415 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical Detection of Single Phospholipid Vesicle Collisions at a Pt Ultramicroelectrode. Lebègue E; Anderson CM; Dick JE; Webb LJ; Bard AJ Langmuir; 2015 Oct; 31(42):11734-9. PubMed ID: 26474107 [TBL] [Abstract][Full Text] [Related]
15. A Snapshot of the Properties of Single Nanoparticles at the Moment of a Collision. Huang X; Deng H; Liu C; Jiang J; Zeng Q; Wang L Chemistry; 2016 Jul; 22(28):9523-7. PubMed ID: 27168168 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of Glass-Insulated Ultramicrometer to Submicrometer Carbon Fiber Electrodes to Support a Single Nanoparticle and Nanoparticle Ensembles in Electrocatalytic Investigations. Ortiz-Ledón CA; Zoski CG Anal Chem; 2018 Nov; 90(21):12616-12624. PubMed ID: 30299083 [TBL] [Abstract][Full Text] [Related]
17. Single nanoparticle collisions at microfluidic microband electrodes: the effect of electrode material and mass transfer. Alligrant TM; Anderson MJ; Dasari R; Stevenson KJ; Crooks RM Langmuir; 2014 Nov; 30(44):13462-9. PubMed ID: 25360826 [TBL] [Abstract][Full Text] [Related]
18. Addressing Colloidal Stability for Unambiguous Electroanalysis of Single Nanoparticle Impacts. Robinson DA; Kondajji AM; Castañeda AD; Dasari R; Crooks RM; Stevenson KJ J Phys Chem Lett; 2016 Jul; 7(13):2512-7. PubMed ID: 27306603 [TBL] [Abstract][Full Text] [Related]
19. Ultra-Sensitive Potentiometric Measurements of Dilute Redox Molecule Solutions and Determination of Sensitivity Factors at Platinum Ultramicroelectrodes. Percival SJ; Bard AJ Anal Chem; 2017 Sep; 89(18):9843-9849. PubMed ID: 28825303 [TBL] [Abstract][Full Text] [Related]
20. Observation and Analysis of Staircase Response of Single Palladium Nanoparticle Collision on Gold Ultramicroelectrodes. Rudakemwa H; Kim KJ; Park TE; Son H; Na J; Kwon SJ Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]