These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 24708586)
1. Biscarbamate cross-linked low molecular weight Polyethylenimine polycation as an efficient intra-cellular delivery cargo for cancer therapy. Ge X; Feng J; Chen S; Zhang C; Ouyang Y; Liu Z; Yuan W J Nanobiotechnology; 2014 Apr; 12():13. PubMed ID: 24708586 [TBL] [Abstract][Full Text] [Related]
2. Biscarbamate cross-linked polyethylenimine derivative with low molecular weight, low cytotoxicity, and high efficiency for gene delivery. Wang YQ; Su J; Wu F; Lu P; Yuan LF; Yuan WE; Sheng J; Jin T Int J Nanomedicine; 2012; 7():693-704. PubMed ID: 22359448 [TBL] [Abstract][Full Text] [Related]
3. Optimized polyethylenimine (PEI)-based nanoparticles for siRNA delivery, analyzed in vitro and in an ex vivo tumor tissue slice culture model. Ewe A; Höbel S; Heine C; Merz L; Kallendrusch S; Bechmann I; Merz F; Franke H; Aigner A Drug Deliv Transl Res; 2017 Apr; 7(2):206-216. PubMed ID: 27334279 [TBL] [Abstract][Full Text] [Related]
4. Reversible Covalent Cross-Linked Polycations with Enhanced Stability and ATP-Responsive Behavior for Improved siRNA Delivery. Zhou Z; Zhang M; Liu Y; Li C; Zhang Q; Oupicky D; Sun M Biomacromolecules; 2018 Sep; 19(9):3776-3787. PubMed ID: 30081638 [TBL] [Abstract][Full Text] [Related]
5. 1,4-Butanediol diglycidyl ether (BDE)-crosslinked PEI-g-imidazole nanoparticles as nucleic acid-carriers in vitro and in vivo. Goyal R; Bansal R; Tyagi S; Shukla Y; Kumar P; Gupta KC Mol Biosyst; 2011 Jun; 7(6):2055-65. PubMed ID: 21505659 [TBL] [Abstract][Full Text] [Related]
6. [Small interfering RNA delivery mediated by mPEG-PCL-g-PEI polymer nanoparticles]. Huang W; Lü M; Gao ZG; Jin MJ; Yang CQ Yao Xue Xue Bao; 2011 Mar; 46(3):344-9. PubMed ID: 21626792 [TBL] [Abstract][Full Text] [Related]
7. Low-weight polyethylenimine cross-linked 2-hydroxypopyl-β-cyclodextrin and folic acid as an efficient and nontoxic siRNA carrier for gene silencing and tumor inhibition by VEGF siRNA. Li JM; Wang YY; Zhang W; Su H; Ji LN; Mao ZW Int J Nanomedicine; 2013; 8():2101-17. PubMed ID: 23766646 [TBL] [Abstract][Full Text] [Related]
8. Elucidating the role of free polycations in gene knockdown by siRNA polyplexes. Klauber TC; Søndergaard RV; Sawant RR; Torchilin VP; Andresen TL Acta Biomater; 2016 Apr; 35():248-59. PubMed ID: 26884277 [TBL] [Abstract][Full Text] [Related]
9. Low molecular weight polyethylenimine cross-linked by 2-hydroxypropyl-gamma-cyclodextrin coupled to peptide targeting HER2 as a gene delivery vector. Huang H; Yu H; Tang G; Wang Q; Li J Biomaterials; 2010 Mar; 31(7):1830-8. PubMed ID: 19942284 [TBL] [Abstract][Full Text] [Related]
10. Lipidation of polyethylenimine-based polyplex increases serum stability of bioengineered RNAi agents and offers more consistent tumoral gene knockdown in vivo. Zhang QY; Ho PY; Tu MJ; Jilek JL; Chen QX; Zeng S; Yu AM Int J Pharm; 2018 Aug; 547(1-2):537-544. PubMed ID: 29894758 [TBL] [Abstract][Full Text] [Related]
11. Superparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA targeted delivery in hepatocellular carcinoma therapy. Yang Z; Duan J; Wang J; Liu Q; Shang R; Yang X; Lu P; Xia C; Wang L; Dou K Int J Nanomedicine; 2018; 13():1851-1865. PubMed ID: 29618926 [TBL] [Abstract][Full Text] [Related]
12. Novel PEI/Poly-γ-Gutamic Acid Nanoparticles for High Efficient siRNA and Plasmid DNA Co-Delivery. Peng SF; Hsu HK; Lin CC; Cheng YM; Hsu KH Molecules; 2017 Jan; 22(1):. PubMed ID: 28054985 [TBL] [Abstract][Full Text] [Related]
13. Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice. Huh MS; Lee SY; Park S; Lee S; Chung H; Lee S; Choi Y; Oh YK; Park JH; Jeong SY; Choi K; Kim K; Kwon IC J Control Release; 2010 Jun; 144(2):134-43. PubMed ID: 20184928 [TBL] [Abstract][Full Text] [Related]
14. Engineering biodegradable micelles of polyethylenimine-based amphiphilic block copolymers for efficient DNA and siRNA delivery. Wang W; Balk M; Deng Z; Wischke C; Gossen M; Behl M; Ma N; Lendlein A J Control Release; 2016 Nov; 242():71-79. PubMed ID: 27498020 [TBL] [Abstract][Full Text] [Related]
15. Elucidating the role of free polycationic chains in polycation gene carriers by free chains of polyethylenimine or N,N,N-trimethyl chitosan plus a certain polyplex. Xu T; Liu W; Wang S; Shao Z Int J Nanomedicine; 2014; 9():3231-45. PubMed ID: 25061299 [TBL] [Abstract][Full Text] [Related]
16. Facial amphipathic deoxycholic acid-modified polyethyleneimine for efficient MMP-2 siRNA delivery in vascular smooth muscle cells. Kim D; Lee D; Jang YL; Chae SY; Choi D; Jeong JH; Kim SH Eur J Pharm Biopharm; 2012 May; 81(1):14-23. PubMed ID: 22311297 [TBL] [Abstract][Full Text] [Related]
17. Acid-responsive linear polyethylenimine for efficient, specific, and biocompatible siRNA delivery. Shim MS; Kwon YJ Bioconjug Chem; 2009 Mar; 20(3):488-99. PubMed ID: 19199781 [TBL] [Abstract][Full Text] [Related]
19. Sialic Acid-Targeted Nanovectors with Phenylboronic Acid-Grafted Polyethylenimine Robustly Enhance siRNA-Based Cancer Therapy. Ji M; Li P; Sheng N; Liu L; Pan H; Wang C; Cai L; Ma Y ACS Appl Mater Interfaces; 2016 Apr; 8(15):9565-76. PubMed ID: 27007621 [TBL] [Abstract][Full Text] [Related]
20. Synthetic polyspermine imidazole-4, 5-amide as an efficient and cytotoxicity-free gene delivery system. Duan SY; Ge XM; Lu N; Wu F; Yuan W; Jin T Int J Nanomedicine; 2012; 7():3813-22. PubMed ID: 22888236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]