BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 24708835)

  • 1. Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction.
    El-Semman IE; Karlsson FH; Shoaie S; Nookaew I; Soliman TH; Nielsen J
    BMC Syst Biol; 2014 Apr; 8():41. PubMed ID: 24708835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis.
    Rios-Covian D; Gueimonde M; Duncan SH; Flint HJ; de los Reyes-Gavilan CG
    FEMS Microbiol Lett; 2015 Nov; 362(21):. PubMed ID: 26420851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut.
    Belenguer A; Duncan SH; Calder AG; Holtrop G; Louis P; Lobley GE; Flint HJ
    Appl Environ Microbiol; 2006 May; 72(5):3593-9. PubMed ID: 16672507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causal Relationship between Diet-Induced Gut Microbiota Changes and Diabetes: A Novel Strategy to Transplant Faecalibacterium prausnitzii in Preventing Diabetes.
    Ganesan K; Chung SK; Vanamala J; Xu B
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30467295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate cross-feeding between
    Zhao S; Lau R; Zhong Y; Chen M-H
    Appl Environ Microbiol; 2024 Jan; 90(1):e0101923. PubMed ID: 38126785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bifidobacterial inulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium prausnitzii.
    Moens F; Weckx S; De Vuyst L
    Int J Food Microbiol; 2016 Aug; 231():76-85. PubMed ID: 27233082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic characterization and transcriptional studies of the starch-utilizing strain Bifidobacterium adolescentis 22L.
    Duranti S; Turroni F; Lugli GA; Milani C; Viappiani A; Mangifesta M; Gioiosa L; Palanza P; van Sinderen D; Ventura M
    Appl Environ Microbiol; 2014 Oct; 80(19):6080-90. PubMed ID: 25063659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Gut Microbiota from Lean and Obese Subjects Contribute Differently to the Fermentation of Arabinogalactan and Inulin.
    Aguirre M; Bussolo de Souza C; Venema K
    PLoS One; 2016; 11(7):e0159236. PubMed ID: 27410967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii.
    Ramirez-Farias C; Slezak K; Fuller Z; Duncan A; Holtrop G; Louis P
    Br J Nutr; 2009 Feb; 101(4):541-50. PubMed ID: 18590586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-Culture with
    Kim H; Jeong Y; Kang S; You HJ; Ji GE
    Microorganisms; 2020 May; 8(5):. PubMed ID: 32466189
    [No Abstract]   [Full Text] [Related]  

  • 11. Reduced Abundance of Butyrate-Producing Bacteria Species in the Fecal Microbial Community in Crohn's Disease.
    Takahashi K; Nishida A; Fujimoto T; Fujii M; Shioya M; Imaeda H; Inatomi O; Bamba S; Sugimoto M; Andoh A
    Digestion; 2016; 93(1):59-65. PubMed ID: 26789999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease.
    Wang W; Chen L; Zhou R; Wang X; Song L; Huang S; Wang G; Xia B
    J Clin Microbiol; 2014 Feb; 52(2):398-406. PubMed ID: 24478468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of Faecalibacterium prausnitzii genomes shows a high level of genome plasticity and warrants separation into new species-level taxa.
    Fitzgerald CB; Shkoporov AN; Sutton TDS; Chaplin AV; Velayudhan V; Ross RP; Hill C
    BMC Genomics; 2018 Dec; 19(1):931. PubMed ID: 30547746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in the relative abundance of
    Björkqvist O; Repsilber D; Seifert M; Brislawn C; Jansson J; Engstrand L; Rangel I; Halfvarson J
    Scand J Gastroenterol; 2019 May; 54(5):577-585. PubMed ID: 31104514
    [No Abstract]   [Full Text] [Related]  

  • 15. Vitamin Biosynthesis by Human Gut Butyrate-Producing Bacteria and Cross-Feeding in Synthetic Microbial Communities.
    Soto-Martin EC; Warnke I; Farquharson FM; Christodoulou M; Horgan G; Derrien M; Faurie JM; Flint HJ; Duncan SH; Louis P
    mBio; 2020 Jul; 11(4):. PubMed ID: 32665271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe.
    Heinken A; Khan MT; Paglia G; Rodionov DA; Harmsen HJ; Thiele I
    J Bacteriol; 2014 Sep; 196(18):3289-302. PubMed ID: 25002542
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Fernandes A; Oliveira A; Carvalho AL; Soares R; Barata P
    Nutrients; 2023 Jun; 15(12):. PubMed ID: 37375584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling Genomic Diversity among Members of the Species
    Lugli GA; Duranti S; Albert K; Mancabelli L; Napoli S; Viappiani A; Anzalone R; Longhi G; Milani C; Turroni F; Alessandri G; Sela DA; van Sinderen D; Ventura M
    Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30737347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gap-filling algorithm for prediction of metabolic interactions in microbial communities.
    Giannari D; Ho CH; Mahadevan R
    PLoS Comput Biol; 2021 Nov; 17(11):e1009060. PubMed ID: 34723959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA.
    Duranti S; Ruiz L; Lugli GA; Tames H; Milani C; Mancabelli L; Mancino W; Longhi G; Carnevali L; Sgoifo A; Margolles A; Ventura M; Ruas-Madiedo P; Turroni F
    Sci Rep; 2020 Aug; 10(1):14112. PubMed ID: 32839473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.