These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 24708869)
1. Estimating the basic reproduction number for single-strain dengue fever epidemics. Khan A; Hassan M; Imran M Infect Dis Poverty; 2014; 3():12. PubMed ID: 24708869 [TBL] [Abstract][Full Text] [Related]
2. Epidemic prediction of dengue fever based on vector compartment model and Markov chain Monte Carlo method. Lee CH; Chang K; Chen YM; Tsai JT; Chen YJ; Ho WH BMC Bioinformatics; 2021 Nov; 22(Suppl 5):118. PubMed ID: 34749630 [TBL] [Abstract][Full Text] [Related]
3. Reviewing estimates of the basic reproduction number for dengue, Zika and chikungunya across global climate zones. Liu Y; Lillepold K; Semenza JC; Tozan Y; Quam MBM; Rocklöv J Environ Res; 2020 Mar; 182():109114. PubMed ID: 31927301 [TBL] [Abstract][Full Text] [Related]
4. Modelling the effective reproduction number of vector-borne diseases: the yellow fever outbreak in Luanda, Angola 2015-2016 as an example. Zhao S; Musa SS; Hebert JT; Cao P; Ran J; Meng J; He D; Qin J PeerJ; 2020; 8():e8601. PubMed ID: 32149023 [TBL] [Abstract][Full Text] [Related]
5. Optimal control strategies for dengue fever spread in Johor, Malaysia. Abidemi A; Aziz NAB Comput Methods Programs Biomed; 2020 Nov; 196():105585. PubMed ID: 32554024 [TBL] [Abstract][Full Text] [Related]
6. Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China. Olabode D; Culp J; Fisher A; Tower A; Hull-Nye D; Wang X Math Biosci Eng; 2021 Jan; 18(1):950-967. PubMed ID: 33525127 [TBL] [Abstract][Full Text] [Related]
7. Dengue Cases in Colombia: Mathematical Forecasts for 2018-2022. López-Montenegro LE; Pulecio-Montoya AM; Marcillo-Hernández GA MEDICC Rev; 2019; 21(2-3):38-45. PubMed ID: 31373583 [TBL] [Abstract][Full Text] [Related]
8. A generic model for a single strain mosquito-transmitted disease with memory on the host and the vector. Sardar T; Rana S; Bhattacharya S; Al-Khaled K; Chattopadhyay J Math Biosci; 2015 May; 263():18-36. PubMed ID: 25645185 [TBL] [Abstract][Full Text] [Related]
9. Estimation of the reproduction number of dengue fever from spatial epidemic data. Chowell G; Diaz-Dueñas P; Miller JC; Alcazar-Velazco A; Hyman JM; Fenimore PW; Castillo-Chavez C Math Biosci; 2007 Aug; 208(2):571-89. PubMed ID: 17303188 [TBL] [Abstract][Full Text] [Related]
10. The basic reproduction number R0 and effectiveness of reactive interventions during dengue epidemics: the 2002 dengue outbreak in Easter Island, Chile. Chowell G; Fuentes R; Olea A; Aguilera X; Nesse H; Hyman JM Math Biosci Eng; 2013; 10(5-6):1455-74. PubMed ID: 24245625 [TBL] [Abstract][Full Text] [Related]
11. The effect of demographic and environmental variability on disease outbreak for a dengue model with a seasonally varying vector population. Nipa KF; Jang SR; Allen LJS Math Biosci; 2021 Jan; 331():108516. PubMed ID: 33253746 [TBL] [Abstract][Full Text] [Related]
12. Practical unidentifiability of a simple vector-borne disease model: Implications for parameter estimation and intervention assessment. Kao YH; Eisenberg MC Epidemics; 2018 Dec; 25():89-100. PubMed ID: 29903539 [TBL] [Abstract][Full Text] [Related]
13. Assessing potential countermeasures against the dengue epidemic in non-tropical urban cities. Masui H; Kakitani I; Ujiyama S; Hashidate K; Shiono M; Kudo K Theor Biol Med Model; 2016 Apr; 13():12. PubMed ID: 27072122 [TBL] [Abstract][Full Text] [Related]
14. A dynamical study of a fuzzy epidemic model of Mosquito-Borne Disease. Dayan F; Rafiq M; Ahmed N; Raza A; Ahmad MO Comput Biol Med; 2022 Sep; 148():105673. PubMed ID: 35803748 [TBL] [Abstract][Full Text] [Related]
15. Some models for epidemics of vector-transmitted diseases. Brauer F; Castillo-Chavez C; Mubayi A; Towers S Infect Dis Model; 2016 Oct; 1(1):79-87. PubMed ID: 29928722 [TBL] [Abstract][Full Text] [Related]
16. Impact of dengue virus infection and its control. Igarashi A FEMS Immunol Med Microbiol; 1997 Aug; 18(4):291-300. PubMed ID: 9348165 [TBL] [Abstract][Full Text] [Related]
17. The role of residence times in two-patch dengue transmission dynamics and optimal strategies. Lee S; Castillo-Chavez C J Theor Biol; 2015 Jun; 374():152-64. PubMed ID: 25791283 [TBL] [Abstract][Full Text] [Related]
18. Estimation of a time-varying force of infection and basic reproduction number with application to an outbreak of classical swine fever. Howard SC; Donnelly CA J Epidemiol Biostat; 2000; 5(3):161-8. PubMed ID: 11051112 [TBL] [Abstract][Full Text] [Related]
19. Modeling the effect of temperature on dengue virus transmission with periodic delay differential equations. Song HT; Tian D; Shan CH Math Biosci Eng; 2020 Jun; 17(4):4147-4164. PubMed ID: 32987573 [TBL] [Abstract][Full Text] [Related]
20. Comparison of stochastic and deterministic frameworks in dengue modelling. Champagne C; Cazelles B Math Biosci; 2019 Apr; 310():1-12. PubMed ID: 30735695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]