BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 24708874)

  • 1. Targeting xCT, a cystine-glutamate transporter induces apoptosis and tumor regression for KSHV/HIV-associated lymphoma.
    Dai L; Cao Y; Chen Y; Parsons C; Qin Z
    J Hematol Oncol; 2014 Apr; 7():30. PubMed ID: 24708874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic analysis of xCT-mediated regulatory network: Identification of novel targets against AIDS-associated lymphoma.
    Dai L; Cao Y; Chen Y; Kaleeba JA; Zabaleta J; Qin Z
    Oncotarget; 2015 May; 6(14):12710-22. PubMed ID: 25860939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic analysis of xCT-regulatory network in KSHV + primary effusion lymphomas.
    Qin Z; Cao Y; Dai L
    Genom Data; 2016 Jun; 8():16-7. PubMed ID: 27081633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repurposing Cytarabine for Treating Primary Effusion Lymphoma by Targeting Kaposi's Sarcoma-Associated Herpesvirus Latent and Lytic Replications.
    Gruffaz M; Zhou S; Vasan K; Rushing T; Michael QL; Lu C; Jung JU; Gao SJ
    mBio; 2018 May; 9(3):. PubMed ID: 29739902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of xCT induces up-regulation of 14-3-3beta in Kaposi's sarcoma.
    Zeng Y; Li Y; Chen RS; He X; Yang L; Li W
    Biosci Rep; 2010 Mar; 30(4):277-83. PubMed ID: 20100173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic analysis of a xenograft mice model for KSHV+ primary effusion lymphoma (PEL).
    Dai L; Trillo-Tinoco J; Bai L; Kang B; Xu Z; Wen X; Del Valle L; Qin Z
    PLoS One; 2014; 9(2):e90349. PubMed ID: 24587336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nm23-H1 induces apoptosis in primary effusion lymphoma cells via inhibition of NF-κB signaling through interaction with oncogenic latent protein vFLIP K13 of Kaposi's sarcoma-associated herpes virus.
    Mohanty S; Kumar A; Das P; Sahu SK; Mukherjee R; Ramachandranpillai R; Nair SS; Choudhuri T
    Cell Oncol (Dordr); 2022 Oct; 45(5):967-989. PubMed ID: 35964258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. p53 reactivation kills KSHV lymphomas efficiently in vitro and in vivo: new hope for treating aggressive viral lymphomas.
    Sarek G; Ojala PM
    Cell Cycle; 2007 Sep; 6(18):2205-9. PubMed ID: 17890905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In primary effusion lymphoma cells, MYB transcriptional repression is associated with v-FLIP expression during latent KSHV infection while both v-FLIP and v-GPCR become involved during the lytic cycle.
    Lacoste V; Nicot C; Gessain A; Valensi F; Gabarre J; Matta H; Chaudhary PM; Mahieux R
    Br J Haematol; 2007 Aug; 138(4):487-501. PubMed ID: 17659053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activated Nrf2 Interacts with Kaposi's Sarcoma-Associated Herpesvirus Latency Protein LANA-1 and Host Protein KAP1 To Mediate Global Lytic Gene Repression.
    Gjyshi O; Roy A; Dutta S; Veettil MV; Dutta D; Chandran B
    J Virol; 2015 Aug; 89(15):7874-92. PubMed ID: 25995248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kaposi's sarcoma-associated herpesvirus fusion-entry receptor: cystine transporter xCT.
    Kaleeba JA; Berger EA
    Science; 2006 Mar; 311(5769):1921-4. PubMed ID: 16574866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ceramides promote apoptosis for virus-infected lymphoma cells through induction of ceramide synthases and viral lytic gene expression.
    Dai L; Trillo-Tinoco J; Bai A; Chen Y; Bielawski J; Del Valle L; Smith CD; Ochoa AC; Qin Z; Parsons C
    Oncotarget; 2015 Sep; 6(27):24246-60. PubMed ID: 26327294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upregulation of xCT by KSHV-encoded microRNAs facilitates KSHV dissemination and persistence in an environment of oxidative stress.
    Qin Z; Freitas E; Sullivan R; Mohan S; Bacelieri R; Branch D; Romano M; Kearney P; Oates J; Plaisance K; Renne R; Kaleeba J; Parsons C
    PLoS Pathog; 2010 Jan; 6(1):e1000742. PubMed ID: 20126446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen dysregulates expression of MCL-1 by targeting FBW7.
    Kim YJ; Kim Y; Kumar A; Kim CW; Toth Z; Cho NH; Lee HR
    PLoS Pathog; 2021 Jan; 17(1):e1009179. PubMed ID: 33471866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and Subcellular Localization of the Kaposi's Sarcoma-Associated Herpesvirus K15P Protein during Latency and Lytic Reactivation in Primary Effusion Lymphoma Cells.
    Smith CG; Kharkwal H; Wilson DW
    J Virol; 2017 Nov; 91(21):. PubMed ID: 28835496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of KSHV-infected primary effusion lymphomas in NOD/SCID mice by gamma-secretase inhibitor.
    Lan K; Murakami M; Bajaj B; Kaul R; He Z; Gan R; Feldman M; Robertson ES
    Cancer Biol Ther; 2009 Nov; 8(22):2136-43. PubMed ID: 19783901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of KAP1 enhances hypoxia-induced Kaposi's sarcoma-associated herpesvirus reactivation through RBP-Jκ.
    Zhang L; Zhu C; Guo Y; Wei F; Lu J; Qin J; Banerjee S; Wang J; Shang H; Verma SC; Yuan Z; Robertson ES; Cai Q
    J Virol; 2014 Jun; 88(12):6873-84. PubMed ID: 24696491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KSHV viral cyclin binds to p27KIP1 in primary effusion lymphomas.
    Järviluoma A; Koopal S; Räsänen S; Mäkelä TP; Ojala PM
    Blood; 2004 Nov; 104(10):3349-54. PubMed ID: 15271792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of primary effusion lymphoma engraftment in SCID mice by morpholino oligomers against early lytic genes of Kaposi's sarcoma-associated herpesvirus.
    Zhang YJ; Patel D; Nan Y; Fan S
    Antivir Ther; 2011; 16(5):657-66. PubMed ID: 21817187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting sphingosine kinase induces apoptosis and tumor regression for KSHV-associated primary effusion lymphoma.
    Qin Z; Dai L; Trillo-Tinoco J; Senkal C; Wang W; Reske T; Bonstaff K; Del Valle L; Rodriguez P; Flemington E; Voelkel-Johnson C; Smith CD; Ogretmen B; Parsons C
    Mol Cancer Ther; 2014 Jan; 13(1):154-64. PubMed ID: 24140934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.