These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 24709072)

  • 1. Producing acoustic 'Frozen Waves': simulated experiments with diffraction/attenuation resistant beams in lossy media.
    Prego-Borges JL; Zamboni-Rached M; Recami E; Costa ET
    Ultrasonics; 2014 Aug; 54(6):1620-30. PubMed ID: 24709072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Producing acoustic frozen waves: simulated experiments.
    Prego-Borges JL; Zamboni-Rached M; Recami E; Hernández-Figueroa HE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2414-25. PubMed ID: 24158296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of "frozen waves": modeling the shape of stationary wave fields.
    Zamboni-Rached M; Recami E; Hernández-Figueroa HE
    J Opt Soc Am A Opt Image Sci Vis; 2005 Nov; 22(11):2465-75. PubMed ID: 16302397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of dynamic frozen waves: controlling shape, location (and speed) of diffraction-resistant beams.
    Vieira TA; Gesualdi MR; Zamboni-Rached M; Recami E
    Opt Lett; 2015 Dec; 40(24):5834-7. PubMed ID: 26670524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: a feasibility study.
    Moros EG; Straube WL; Klein EE; Yousaf M; Myerson RJ
    Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):893-904. PubMed ID: 7860403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: Frozen Waves.
    Zamboni-Rached M
    Opt Express; 2004 Aug; 12(17):4001-6. PubMed ID: 19483938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force.
    Ergün AS
    Ultrasonics; 2011 Oct; 51(7):786-94. PubMed ID: 21459399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic field modeling for physiotherapy ultrasound applicators by using approximated functions of measured non-uniform radiation distributions.
    Gutiérrez MI; Calás H; Ramos A; Vera A; Leija L
    Ultrasonics; 2012 Aug; 52(6):767-77. PubMed ID: 22405588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffraction-Attenuation resistant beams in absorbing media.
    Zamboni-Rached M
    Opt Express; 2006 Mar; 14(5):1804-9. PubMed ID: 19503509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media.
    Jing Y; Cleveland RO
    J Acoust Soc Am; 2007 Sep; 122(3):1352. PubMed ID: 17927398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T-wave generation and propagation: a comparison between data and spectral element modeling.
    Jamet G; Guennou C; Guillon L; Mazoyer C; Royer JY
    J Acoust Soc Am; 2013 Oct; 134(4):3376-85. PubMed ID: 24116530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-D numerical modeling for axisymmetrical piezoelectric structures: application to high-frequency ultrasonic transducers.
    Filoux E; Callé S; Lou-Moeller R; Lethiecq M; Levassort F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1188-99. PubMed ID: 20442031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time reversal of flexural waves in a beam at audible frequency.
    Francoeur D; Berry A
    J Acoust Soc Am; 2008 Aug; 124(2):1006-17. PubMed ID: 18681592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method to optimize the placement of a single-element transducer for transcranial focused ultrasound.
    Park TY; Pahk KJ; Kim H
    Comput Methods Programs Biomed; 2019 Oct; 179():104982. PubMed ID: 31443869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low sidelobe limited diffraction beams in the nonlinear regime.
    Holm S; Prieur F
    J Acoust Soc Am; 2010 Sep; 128(3):1015-20. PubMed ID: 20815438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical calculation of the sound field focused by acoustic lens with an arbitrary axisymmetric sound speed distribution.
    Yan XH; Zhang YP; Liu KH; Liu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Apr; 54(4):823-9. PubMed ID: 17441591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pattern formation of second harmonic conical waves in a nonlinear medium with extended defect structure.
    Lin YC; Su KW; Huang KF; Chen YF
    Opt Express; 2014 Nov; 22(23):27859-68. PubMed ID: 25402028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical approach of ordinary frozen waves for optical trapping and micromanipulation.
    Ambrosio LA; Zamboni-Rached M
    Appl Opt; 2015 Apr; 54(10):2584-93. PubMed ID: 25967163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.