BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 24709352)

  • 1. Light harvesting over a wide range of wavelength using natural dyes of gardenia and cochineal for dye-sensitized solar cells.
    Park KH; Kim TY; Han S; Ko HS; Lee SH; Song YM; Kim JH; Lee JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():868-73. PubMed ID: 24709352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light Harvesting Over Wide Range of Wavelengths by Rainbow Dye-Sensitized Solar Cells.
    Kim JH; Cho WH; Song YM; Kim TY; Park KH; Lee JW
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1553-7. PubMed ID: 27433620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photovoltaic performance of TiO2 electrode adsorbed with gardenia yellow purified by nonionic polymeric sorbent in dye-sensitized solar cells.
    Kwon OO; Kim EJ; Lee JH; Kim TY; Park KH; Kim SY; Suh HJ; Lee HJ; Lee JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1460-6. PubMed ID: 25459707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands.
    Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB
    J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocurrent generation by adsorption of two main pigments of Halobacterium salinarum on TiO2 nanostructured electrode.
    Molaeirad A; Janfaza S; Karimi-Fard A; Mahyad B
    Biotechnol Appl Biochem; 2015; 62(1):121-5. PubMed ID: 24823651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell.
    Lee JW; Kim TY; Ko HS; Han S; Lee SH; Park KH
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 126():76-80. PubMed ID: 24589993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double-layer electrode based on TiO2 nanotubes arrays for enhancing photovoltaic properties in dye-sensitized solar cells.
    He Z; Que W; Sun P; Ren J
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12779-83. PubMed ID: 24304127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells.
    Chen HY; Zhang TL; Fan J; Kuang DB; Su CY
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9205-11. PubMed ID: 23962052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a TiO2 nanosheet/nanoparticle gradient film photoanode and its improved performance for dye-sensitized solar cells.
    Wang W; Zhang H; Wang R; Feng M; Chen Y
    Nanoscale; 2014 Feb; 6(4):2390-6. PubMed ID: 24435106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photophysical and electrochemical properties, and molecular structures of organic dyes for dye-sensitized solar cells.
    Ooyama Y; Harima Y
    Chemphyschem; 2012 Dec; 13(18):4032-80. PubMed ID: 22807392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional theory study of adsorption geometries and electronic structures of azo-dye-based molecules on anatase TiO
    Prajongtat P; Suramitr S; Nokbin S; Nakajima K; Mitsuke K; Hannongbua S
    J Mol Graph Model; 2017 Sep; 76():551-561. PubMed ID: 28688705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells.
    Ananth S; Vivek P; Arumanayagam T; Murugakoothan P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():420-6. PubMed ID: 24682058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dye-adsorption solvent on the performances of the dye-sensitized solar cells based on black dye.
    Ozawa H; Awa M; Ono T; Arakawa H
    Chem Asian J; 2012 Jan; 7(1):156-62. PubMed ID: 22114015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of solvents on the extraction of natural pigments and adsorption onto TiO2 for dye-sensitized solar cell applications.
    Al-Alwani MA; Mohamad AB; Kadhum AA; Ludin NA
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():130-7. PubMed ID: 25483560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green grasses as light harvesters in dye sensitized solar cells.
    Shanmugam V; Manoharan S; Sharafali A; Anandan S; Murugan R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():947-52. PubMed ID: 25168231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergetic effect of Leucophyllum frutescens and Ehretia microphylla dyes in enhancing the photovoltaic performance of dye-sensitized solar cells.
    Soosairaj A; Gunasekaran A; Anandan S; Asirvatham LR
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):52895-52905. PubMed ID: 36843160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells.
    Wang H; Bai Y; Wu Q; Zhou W; Zhang H; Li J; Guo L
    Phys Chem Chem Phys; 2011 Apr; 13(15):7008-13. PubMed ID: 21399795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes.
    Abdou EM; Hafez HS; Bakir E; Abdel-Mottaleb MS
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():202-7. PubMed ID: 23832227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement in light harvesting in a dye sensitized solar cell based on cascade charge transfer.
    Yang L; Leung WW; Wang J
    Nanoscale; 2013 Aug; 5(16):7493-8. PubMed ID: 23831867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.