BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 24709539)

  • 1. Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation.
    Pala M; Kantarli IC; Buyukisik HB; Yanik J
    Bioresour Technol; 2014 Jun; 161():255-62. PubMed ID: 24709539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agro-industrial waste to solid biofuel through hydrothermal carbonization.
    Basso D; Patuzzi F; Castello D; Baratieri M; Rada EC; Weiss-Hortala E; Fiori L
    Waste Manag; 2016 Jan; 47(Pt A):114-21. PubMed ID: 26031328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of spent liquor recirculation in hydrothermal carbonization.
    Kabadayi Catalkopru A; Kantarli IC; Yanik J
    Bioresour Technol; 2017 Feb; 226():89-93. PubMed ID: 28006737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches.
    Parshetti GK; Kent Hoekman S; Balasubramanian R
    Bioresour Technol; 2013 May; 135():683-9. PubMed ID: 23127830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of hydrothermal carbonization and coupling washing with torrefaction of bamboo sawdust for biofuels production.
    Zhang S; Su Y; Xu D; Zhu S; Zhang H; Liu X
    Bioresour Technol; 2018 Jun; 258():111-118. PubMed ID: 29524685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo.
    Yang W; Wang H; Zhang M; Zhu J; Zhou J; Wu S
    Bioresour Technol; 2016 Apr; 205():199-204. PubMed ID: 26826960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermal carbonization of municipal waste streams.
    Berge ND; Ro KS; Mao J; Flora JR; Chappell MA; Bae S
    Environ Sci Technol; 2011 Jul; 45(13):5696-703. PubMed ID: 21671644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Torrefaction of agriculture straws and its application on biomass pyrolysis poly-generation.
    Chen Y; Yang H; Yang Q; Hao H; Zhu B; Chen H
    Bioresour Technol; 2014 Mar; 156():70-7. PubMed ID: 24486935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pelletization and combustion properties of torrefied Camellia shell via dry and hydrothermal torrefaction: A comparative evaluation.
    Tu R; Jiang E; Yan S; Xu X; Rao S
    Bioresour Technol; 2018 Sep; 264():78-89. PubMed ID: 29787884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes.
    Berge ND; Li L; Flora JR; Ro KS
    Waste Manag; 2015 Sep; 43():203-17. PubMed ID: 26049203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influences of feedstock type and process variables on hydrochar properties.
    Toptas Tag A; Duman G; Yanik J
    Bioresour Technol; 2018 Feb; 250():337-344. PubMed ID: 29182991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of solid content and maximum temperature on the performance of a hydrothermal carbonization reactor.
    Zabaleta I; Marchetti P; Lohri CR; Zurbrügg C
    Environ Technol; 2017 Nov; 38(22):2856-2865. PubMed ID: 28067116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties.
    Zhou S; Liang H; Han L; Huang G; Yang Z
    Waste Manag; 2019 Apr; 88():85-95. PubMed ID: 31079653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel.
    Minaret J; Dutta A
    Bioresour Technol; 2016 Jan; 200():804-11. PubMed ID: 26584229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis of hydrochar from digestate: Effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation.
    Garlapalli RK; Wirth B; Reza MT
    Bioresour Technol; 2016 Nov; 220():168-174. PubMed ID: 27567477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor.
    Erdogan E; Atila B; Mumme J; Reza MT; Toptas A; Elibol M; Yanik J
    Bioresour Technol; 2015 Nov; 196():35-42. PubMed ID: 26226579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel.
    Lee J; Hong J; Jang D; Park KY
    J Environ Manage; 2019 Oct; 247():115-120. PubMed ID: 31234046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties.
    Volpe M; Goldfarb JL; Fiori L
    Bioresour Technol; 2018 Jan; 247():310-318. PubMed ID: 28950140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic effect of hydrothermal co-carbonization of sewage sludge with fruit and agricultural wastes on hydrochar fuel quality and combustion behavior.
    He C; Zhang Z; Ge C; Liu W; Tang Y; Zhuang X; Qiu R
    Waste Manag; 2019 Dec; 100():171-181. PubMed ID: 31541922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of solvent and feedstock selection on primary and secondary chars produced via hydrothermal carbonization of food wastes.
    Pecchi M; Baratieri M; Goldfarb JL; Maag AR
    Bioresour Technol; 2022 Mar; 348():126799. PubMed ID: 35122980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.