These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 24709985)

  • 1. Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle.
    Urrego R; Rodriguez-Osorio N; Niemann H
    Epigenetics; 2014 Jun; 9(6):803-15. PubMed ID: 24709985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhance beef cattle improvement by embryo biotechnologies.
    Wu B; Zan L
    Reprod Domest Anim; 2012 Oct; 47(5):865-71. PubMed ID: 22128751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consequences of assisted reproductive techniques on the embryonic epigenome in cattle.
    Rivera RM
    Reprod Fertil Dev; 2019 Jan; 32(2):65-81. PubMed ID: 32188559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. State-of-the-art embryo technologies in cattle.
    Lonergan P
    Soc Reprod Fertil Suppl; 2007; 64():315-25. PubMed ID: 17491156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of superovulation and reproductive aging on the epigenome of the oocyte and embryo.
    Marshall KL; Rivera RM
    Mol Reprod Dev; 2018 Feb; 85(2):90-105. PubMed ID: 29280527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies.
    Denomme MM; Mann MR
    Reproduction; 2012 Oct; 144(4):393-409. PubMed ID: 22956517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome.
    Hori N; Nagai M; Hirayama M; Hirai T; Matsuda K; Hayashi M; Tanaka T; Ozawa T; Horike S
    Anim Reprod Sci; 2010 Dec; 122(3-4):303-12. PubMed ID: 21035970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex vivo early embryo development and effects on gene expression and imprinting.
    Gardner DK; Lane M
    Reprod Fertil Dev; 2005; 17(3):361-70. PubMed ID: 15745644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA methylation reprogramming during oogenesis and interference by reproductive technologies: Studies in mouse and bovine models.
    Anckaert E; Fair T
    Reprod Fertil Dev; 2015 Jun; 27(5):739-54. PubMed ID: 25976160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perturbations in imprinted methylation from assisted reproductive technologies but not advanced maternal age in mouse preimplantation embryos.
    Kindsfather AJ; Czekalski MA; Pressimone CA; Erisman MP; Mann MRW
    Clin Epigenetics; 2019 Nov; 11(1):162. PubMed ID: 31767035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assisted reproductive techniques for cattle breeding in developing countries: a critical appraisal of their value and limitations.
    Rodriguez-Martinez H
    Reprod Domest Anim; 2012 Jan; 47 Suppl 1():21-6. PubMed ID: 22212208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting oocyte quality and quantity in commercial application of embryo technologies in the cattle breeding industry.
    Merton JS; de Roos AP; Mullaart E; de Ruigh L; Kaal L; Vos PL; Dieleman SJ
    Theriogenology; 2003 Jan; 59(2):651-74. PubMed ID: 12499010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moderate maternal folic acid supplementation ameliorates adverse embryonic and epigenetic outcomes associated with assisted reproduction in a mouse model.
    Rahimi S; Martel J; Karahan G; Angle C; Behan NA; Chan D; MacFarlane AJ; Trasler JM
    Hum Reprod; 2019 May; 34(5):851-862. PubMed ID: 30989206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embryo responses to stress induced by assisted reproductive technologies.
    Ramos-Ibeas P; Heras S; Gómez-Redondo I; Planells B; Fernández-González R; Pericuesta E; Laguna-Barraza R; Pérez-Cerezales S; Gutiérrez-Adán A
    Mol Reprod Dev; 2019 Oct; 86(10):1292-1306. PubMed ID: 30719806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Astaxanthin Normalizes Epigenetic Modifications of Bovine Somatic Cell Cloned Embryos and Decreases the Generation of Lipid Peroxidation.
    Li R; Wu H; Zhuo WW; Mao QF; Lan H; Zhang Y; Hua S
    Reprod Domest Anim; 2015 Oct; 50(5):793-9. PubMed ID: 26280670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exposure of bovine oocytes and embryos to elevated non-esterified fatty acid concentrations: integration of epigenetic and transcriptomic signatures in resultant blastocysts.
    Desmet KL; Van Hoeck V; Gagné D; Fournier E; Thakur A; O'Doherty AM; Walsh CP; Sirard MA; Bols PE; Leroy JL
    BMC Genomics; 2016 Dec; 17(1):1004. PubMed ID: 27931182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance.
    Market-Velker BA; Fernandes AD; Mann MR
    Biol Reprod; 2010 Dec; 83(6):938-50. PubMed ID: 20702853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review: Environmental impact on early embryonic development in the bovine species.
    Besenfelder U; Brem G; Havlicek V
    Animal; 2020 Mar; 14(S1):s103-s112. PubMed ID: 32024564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of and interactions between environmental stress and epigenetic programming during early embryo development.
    Bertoldo MJ; Locatelli Y; O'Neill C; Mermillod P
    Reprod Fertil Dev; 2015 Nov; 27(8):1125-36. PubMed ID: 24965854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consequences of assisted reproductive technologies for offspring function in cattle.
    Siqueira LG; Silva MVG; Panetto JC; Viana JH
    Reprod Fertil Dev; 2019 Jan; 32(2):82-97. PubMed ID: 32188560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.