These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24710178)

  • 1. Immobilizing Ni nanoparticles to mesoporous silica with size and location control via a polyol-assisted route for coking- and sintering-resistant dry reforming of methane.
    Xie T; Shi L; Zhang J; Zhang D
    Chem Commun (Camb); 2014 Jul; 50(55):7250-3. PubMed ID: 24710178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient and robust reforming catalyst in severe reaction conditions by nanoprecursor reduction in confined space.
    Dacquin JP; Sellam D; Batiot-Dupeyrat C; Tougerti A; Duprez D; Royer S
    ChemSusChem; 2014 Feb; 7(2):631-7. PubMed ID: 24323543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot synthesis of highly sintering- and coking-resistant Ni nanoparticles encapsulated in dendritic mesoporous SiO
    Tian J; Ma B; Bu S; Yuan Q; Zhao C
    Chem Commun (Camb); 2018 Dec; 54(99):13993-13996. PubMed ID: 30480674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coking- and Sintering-Resistant Ni Nanocatalysts Confined by Active BN Edges for Methane Dry Reforming.
    Zhang X; Deng J; Lan T; Shen Y; Qu W; Zhong Q; Zhang D
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25439-25447. PubMed ID: 35604327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spherical Ni Nanoparticles Supported by Nanosheet-Assembled Al
    Zhang S; Tang L; Yu J; Zhan W; Wang L; Guo Y; Guo Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58605-58618. PubMed ID: 34866393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of highly disperse Ni-Co nanoparticles over mesoporous silica for enhanced methane dry reforming.
    Das S; Sengupta M; Bag A; Shah M; Bordoloi A
    Nanoscale; 2018 Apr; 10(14):6409-6425. PubMed ID: 29561924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in-depth understanding of the bimetallic effects and coked carbon species on an active bimetallic Ni(Co)/Al2O3 dry reforming catalyst.
    Liao X; Gerdts R; Parker SF; Chi L; Zhao Y; Hill M; Guo J; Jones MO; Jiang Z
    Phys Chem Chem Phys; 2016 Jun; 18(26):17311-9. PubMed ID: 27326792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative methane reforming with an intelligent catalyst: sintering-tolerant supported nickel nanoparticles.
    Deng J; Cai M; Sun W; Liao X; Chu W; Zhao XS
    ChemSusChem; 2013 Nov; 6(11):2061-5. PubMed ID: 24124009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of Novel Mesoporous LaFeO
    Li L; Wu S; Li H; Deng J; Li J
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Dispersed Nickel-Containing Mesoporous Silica with Superior Stability in Carbon Dioxide Reforming of Methane: The Effect of Anchoring.
    Cai W; Ye L; Zhang L; Ren Y; Yue B; Chen X; He H
    Materials (Basel); 2014 Mar; 7(3):2340-2355. PubMed ID: 28788570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silica-Enveloped 2D-Sheet-to-Nanocrystals Conversion for Resilient Catalytic Dry Reforming of Methane.
    Jang SW; Dutta S; Kumar A; Kim SM; You YW; Lee IS
    Small; 2021 Aug; 17(34):e2102851. PubMed ID: 34263553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly coke resistant Mg-Ni/Al
    Feng X; Liu J; Zhang P; Zhang Q; Xu L; Zhao L; Song X; Gao L
    Nanoscale; 2019 Jan; 11(3):1262-1272. PubMed ID: 30603751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO.
    Song Y; Ozdemir E; Ramesh S; Adishev A; Subramanian S; Harale A; Albuali M; Fadhel BA; Jamal A; Moon D; Choi SH; Yavuz CT
    Science; 2020 Feb; 367(6479):777-781. PubMed ID: 32054760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low Temperature CO
    Wang F; Han K; Yu W; Zhao L; Wang Y; Wang X; Yu H; Shi W
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35022-35034. PubMed ID: 32644767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dry Reforming of CH
    Cheng F; Duan X; Xie K
    Angew Chem Int Ed Engl; 2021 Aug; 60(34):18792-18799. PubMed ID: 34101335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NiYAl-Derived Nanoporous Catalysts for Dry Reforming of Methane.
    Imada S; Peng X; Cai Z; Najib ASBM; Miyauchi M; Abe H; Fujita T
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32349430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing Thermocatalytic Activities by Upshifting the d-Band Center of Exsolved Co-Ni-Fe Ternary Alloy Nanoparticles for the Dry Reforming of Methane.
    Joo S; Kim K; Kwon O; Oh J; Kim HJ; Zhang L; Zhou J; Wang JQ; Jeong HY; Han JW; Kim G
    Angew Chem Int Ed Engl; 2021 Jul; 60(29):15912-15919. PubMed ID: 33961725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexagonal boron nitride supported mesoSiO
    Cao Y; Lu M; Fang J; Shi L; Zhang D
    Chem Commun (Camb); 2017 Jul; 53(54):7549-7552. PubMed ID: 28634608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dry Reforming of Methane on a Highly-Active Ni-CeO2 Catalyst: Effects of Metal-Support Interactions on C-H Bond Breaking.
    Liu Z; Grinter DC; Lustemberg PG; Nguyen-Phan TD; Zhou Y; Luo S; Waluyo I; Crumlin EJ; Stacchiola DJ; Zhou J; Carrasco J; Busnengo HF; Ganduglia-Pirovano MV; Senanayake SD; Rodriguez JA
    Angew Chem Int Ed Engl; 2016 Jun; 55(26):7455-9. PubMed ID: 27144344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.