These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24710311)

  • 1. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million.
    Tao Y; Boss JM; Moores BA; Degen CL
    Nat Commun; 2014 Apr; 5():3638. PubMed ID: 24710311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoladder Cantilevers Made from Diamond and Silicon.
    Héritier M; Eichler A; Pan Y; Grob U; Shorubalko I; Krass MD; Tao Y; Degen CL
    Nano Lett; 2018 Mar; 18(3):1814-1818. PubMed ID: 29412676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High quality-factor optical nanocavities in bulk single-crystal diamond.
    Burek MJ; Chu Y; Liddy MS; Patel P; Rochman J; Meesala S; Hong W; Quan Q; Lukin MD; Lončar M
    Nat Commun; 2014 Dec; 5():5718. PubMed ID: 25511421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection.
    Tao Y; Navaretti P; Hauert R; Grob U; Poggio M; C L Degen
    Nanotechnology; 2015 Nov; 26(46):465501. PubMed ID: 26501931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomechanical Crystalline AlN Resonators with High Quality Factors for Quantum Optoelectromechanics.
    Ciers A; Jung A; Ciers J; Nindito LR; Pfeifer H; Dadgar A; Strittmatter A; Wieczorek W
    Adv Mater; 2024 Nov; 36(44):e2403155. PubMed ID: 39285850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low propagation loss in a one-port SAW resonator fabricated on single-crystal diamond for super-high-frequency applications.
    Fujii S; Odawara T; Yamada H; Omori T; Hashimoto KY; Torii H; Umezawa H; Shikata S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):986-92. PubMed ID: 23661133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanofluidics of Single-Crystal Diamond Nanomechanical Resonators.
    Kara V; Sohn YI; Atikian H; Yakhot V; Lončar M; Ekinci KL
    Nano Lett; 2015 Dec; 15(12):8070-6. PubMed ID: 26509332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical tensile structures with ultralow mechanical dissipation.
    Bereyhi MJ; Beccari A; Groth R; Fedorov SA; Arabmoheghi A; Kippenberg TJ; Engelsen NJ
    Nat Commun; 2022 Jun; 13(1):3097. PubMed ID: 35654776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diamond Nanomechanical Resonators Protected by a Phononic Band Gap.
    Li X; Lekavicius I; Wang H
    Nano Lett; 2022 Dec; 22(24):10163-10166. PubMed ID: 36515668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrananocrystalline diamond tip integrated onto a heated atomic force microscope cantilever.
    Kim HJ; Moldovan N; Felts JR; Somnath S; Dai Z; Jacobs TD; Carpick RW; Carlisle JA; King WP
    Nanotechnology; 2012 Dec; 23(49):495302. PubMed ID: 23149947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin single crystal diamond nanomechanical dome resonators.
    Zalalutdinov MK; Ray MP; Photiadis DM; Robinson JT; Baldwin JW; Butler JE; Feygelson TI; Pate BB; Houston BH
    Nano Lett; 2011 Oct; 11(10):4304-8. PubMed ID: 21913676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single crystal diamond membranes for nanoelectronics.
    Bray K; Kato H; Previdi R; Sandstrom R; Ganesan K; Ogura M; Makino T; Yamasaki S; Magyar AP; Toth M; Aharonovich I
    Nanoscale; 2018 Feb; 10(8):4028-4035. PubMed ID: 29431820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High
    Joe G; Chia C; Pingault B; Haas M; Chalupnik M; Cornell E; Kuruma K; Machielse B; Sinclair N; Meesala S; Lončar M
    Nano Lett; 2024 Jun; 24(23):6831-6837. PubMed ID: 38815209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diamond-integrated optomechanical circuits.
    Rath P; Khasminskaya S; Nebel C; Wild C; Pernice WH
    Nat Commun; 2013; 4():1690. PubMed ID: 23575694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable fabrication of high-quality, ultra-thin single crystal diamond membrane windows.
    Piracha AH; Ganesan K; Lau DW; Stacey A; McGuinness LP; Tomljenovic-Hanic S; Prawer S
    Nanoscale; 2016 Mar; 8(12):6860-5. PubMed ID: 26956525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-
    Butcher A; Guo X; Shreiner R; Delegan N; Hao K; Duda PJ; Awschalom DD; Heremans FJ; High AA
    Nano Lett; 2020 Jun; 20(6):4603-4609. PubMed ID: 32441528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh-quality-factor micro- and nanomechanical resonators using dissipation dilution.
    Engelsen NJ; Beccari A; Kippenberg TJ
    Nat Nanotechnol; 2024 Jun; 19(6):725-737. PubMed ID: 38443697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical racetrack resonator transduction of nanomechanical cantilevers.
    Sauer VT; Diao Z; Freeman MR; Hiebert WK
    Nanotechnology; 2014 Feb; 25(5):055202. PubMed ID: 24406727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-standing mechanical and photonic nanostructures in single-crystal diamond.
    Burek MJ; de Leon NP; Shields BJ; Hausmann BJ; Chu Y; Quan Q; Zibrov AS; Park H; Lukin MD; Lončar M
    Nano Lett; 2012 Dec; 12(12):6084-9. PubMed ID: 23163557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of nonlinear dissipation in piezoresistive diamond nanomechanical resonators by heterodyne down-mixing.
    Imboden M; Williams OA; Mohanty P
    Nano Lett; 2013 Sep; 13(9):4014-9. PubMed ID: 23953003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.