These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24710354)

  • 21. Cooperative and out-of-core execution of the irregular wavefront propagation pattern on hybrid machines with Intel
    Gomes J; de Melo ACMA; Kong J; Kurc T; Saltz JH; Teodoro G
    Concurr Comput; 2018 Jul; 30(14):. PubMed ID: 30344454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Clustal Omega Multiple Alignment Package.
    Sievers F; Higgins DG
    Methods Mol Biol; 2021; 2231():3-16. PubMed ID: 33289883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genomic multiple sequence alignments: refinement using a genetic algorithm.
    Wang C; Lefkowitz EJ
    BMC Bioinformatics; 2005 Aug; 6():200. PubMed ID: 16086841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. cuBLASTP: Fine-Grained Parallelization of Protein Sequence Search on CPU+GPU.
    Zhang J; Wang H; Feng WC
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):830-843. PubMed ID: 26469393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A data parallel strategy for aligning multiple biological sequences on multi-core computers.
    Zhu X; Li K; Salah A
    Comput Biol Med; 2013 May; 43(4):350-61. PubMed ID: 23414778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Searching for distantly related protein sequences in large databases by parallel processing on a transputer machine.
    Vogt G; Argos P
    Comput Appl Biosci; 1992 Feb; 8(1):49-55. PubMed ID: 1568125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BGSA: a bit-parallel global sequence alignment toolkit for multi-core and many-core architectures.
    Zhang J; Lan H; Chan Y; Shang Y; Schmidt B; Liu W
    Bioinformatics; 2019 Jul; 35(13):2306-2308. PubMed ID: 30445566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphics Processing Unit-Enhanced Genetic Algorithms for Solving the Temporal Dynamics of Gene Regulatory Networks.
    García-Calvo R; Guisado JL; Diaz-Del-Rio F; Córdoba A; Jiménez-Morales F
    Evol Bioinform Online; 2018; 14():1176934318767889. PubMed ID: 29662297
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accelerating large-scale protein structure alignments with graphics processing units.
    Pang B; Zhao N; Becchi M; Korkin D; Shyu CR
    BMC Res Notes; 2012 Feb; 5():116. PubMed ID: 22357132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SWPS3 - fast multi-threaded vectorized Smith-Waterman for IBM Cell/B.E. and x86/SSE2.
    Szalkowski A; Ledergerber C; Krähenbühl P; Dessimoz C
    BMC Res Notes; 2008 Oct; 1():107. PubMed ID: 18959793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions.
    Liu Y; Wirawan A; Schmidt B
    BMC Bioinformatics; 2013 Apr; 14():117. PubMed ID: 23557111
    [TBL] [Abstract][Full Text] [Related]  

  • 32. M2Align: parallel multiple sequence alignment with a multi-objective metaheuristic.
    Zambrano-Vega C; Nebro AJ; García-Nieto J; Aldana-Montes JF
    Bioinformatics; 2017 Oct; 33(19):3011-3017. PubMed ID: 28541404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Semiglobal Sequence Alignment with Gaps Using GPU.
    Carroll TC; Ojiaku JT; Wong PWH
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2086-2097. PubMed ID: 31056513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CUDAMPF: a multi-tiered parallel framework for accelerating protein sequence search in HMMER on CUDA-enabled GPU.
    Jiang H; Ganesan N
    BMC Bioinformatics; 2016 Feb; 17():106. PubMed ID: 26920848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SWIFOLD: Smith-Waterman implementation on FPGA with OpenCL for long DNA sequences.
    Rucci E; Garcia C; Botella G; De Giusti A; Naiouf M; Prieto-Matias M
    BMC Syst Biol; 2018 Nov; 12(Suppl 5):96. PubMed ID: 30458766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-world comparison of CPU and GPU implementations of SNPrank: a network analysis tool for GWAS.
    Davis NA; Pandey A; McKinney BA
    Bioinformatics; 2011 Jan; 27(2):284-5. PubMed ID: 21115438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parallel implementation of 3D protein structure similarity searches using a GPU and the CUDA.
    Mrozek D; Brożek M; Małysiak-Mrozek B
    J Mol Model; 2014 Feb; 20(2):2067. PubMed ID: 24481593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing.
    Fang Y; Ding Y; Feinstein WP; Koppelman DM; Moreno J; Jarrell M; Ramanujam J; Brylinski M
    PLoS One; 2016; 11(7):e0158898. PubMed ID: 27420300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GAMUT: GPU accelerated microRNA analysis to uncover target genes through CUDA-miRanda.
    Wang S; Kim J; Jiang X; Brunner SF; Ohno-Machado L
    BMC Med Genomics; 2014; 7 Suppl 1(Suppl 1):S9. PubMed ID: 25077821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. parMATT: parallel multiple alignment of protein 3D-structures with translations and twists for distributed-memory systems.
    Shegay MV; Suplatov DA; Popova NN; Švedas VK; Voevodin VV
    Bioinformatics; 2019 Nov; 35(21):4456-4458. PubMed ID: 30918940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.