BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24710517)

  • 1. ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny.
    Glick L; Mayrose I
    Mol Biol Evol; 2014 Jul; 31(7):1914-22. PubMed ID: 24710517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic models of chromosome number evolution and the inference of polyploidy.
    Mayrose I; Barker MS; Otto SP
    Syst Biol; 2010 Mar; 59(2):132-44. PubMed ID: 20525626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring Chromosome Number Changes Along a Phylogeny Using chromEvol.
    Rice A; Mayrose I
    Methods Mol Biol; 2023; 2545():175-187. PubMed ID: 36720813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using ChromEvol to Determine the Mode of Chromosomal Evolution.
    Escudero M; Maguilla E; Márquez-Corro JI; Martín-Bravo S; Mayrose I; Shafir A; Tan L; Tribble C; Zenil-Ferguson R
    Methods Mol Biol; 2023; 2672():529-547. PubMed ID: 37335498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cladogenetic and Anagenetic Models of Chromosome Number Evolution: A Bayesian Model Averaging Approach.
    Freyman WA; Höhna S
    Syst Biol; 2018 Mar; 67(2):195-215. PubMed ID: 28945917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model adequacy tests for probabilistic models of chromosome-number evolution.
    Rice A; Mayrose I
    New Phytol; 2021 Mar; 229(6):3602-3613. PubMed ID: 33226654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep dive into the ancestral chromosome number and genome size of flowering plants.
    Carta A; Bedini G; Peruzzi L
    New Phytol; 2020 Nov; 228(3):1097-1106. PubMed ID: 32421860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Impact of Reconstruction Methods, Phylogenetic Uncertainty and Branch Lengths on Inference of Chromosome Number Evolution in American Daisies (Melampodium, Asteraceae).
    McCann J; Schneeweiss GM; Stuessy TF; Villaseñor JL; Weiss-Schneeweiss H
    PLoS One; 2016; 11(9):e0162299. PubMed ID: 27611687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drivers of diversification in Linum (Linaceae) by means of chromosome evolution: correlations with biogeography, breeding system and habit.
    Valdés-Florido A; Tan L; Maguilla E; Simón-Porcar VI; Zhou YH; Arroyo J; Escudero M
    Ann Bot; 2023 Nov; 132(5):949-962. PubMed ID: 37738171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximum likelihood inference implies a high, not a low, ancestral haploid chromosome number in Araceae, with a critique of the bias introduced by 'x'.
    Cusimano N; Sousa A; Renner SS
    Ann Bot; 2012 Mar; 109(4):681-92. PubMed ID: 22210850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring hypothesis-based transitions in clade-specific models of chromosome number evolution in sedges (Cyperaceae).
    Márquez-Corro JI; Martín-Bravo S; Spalink D; Luceño M; Escudero M
    Mol Phylogenet Evol; 2019 Jun; 135():203-209. PubMed ID: 30880144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyploids, genome halving and phylogeny.
    Sankoff D; Zheng C; Zhu Q
    Bioinformatics; 2007 Jul; 23(13):i433-9. PubMed ID: 17646328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are holocentrics doomed to change? Limited chromosome number variation in Rhynchospora Vahl (Cyperaceae).
    Ribeiro T; Buddenhagen CE; Thomas WW; Souza G; Pedrosa-Harand A
    Protoplasma; 2018 Jan; 255(1):263-272. PubMed ID: 28844108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Descending Dysploidy and Bidirectional Changes in Genome Size Accompanied
    Senderowicz M; Nowak T; Rojek-Jelonek M; Bisaga M; Papp L; Weiss-Schneeweiss H; Kolano B
    Genes (Basel); 2021 Sep; 12(9):. PubMed ID: 34573417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Overview to the Index to Chromosome Numbers in Asteraceae Database: Revisiting Base Chromosome Numbers, Polyploidy, Descending Dysploidy, and Hybridization.
    Semple JC; Watanabe K
    Methods Mol Biol; 2023; 2703():161-171. PubMed ID: 37646944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do chromosome numbers reflect phylogeny? New counts for Bombacoideae and a review of Malvaceae s.l.
    Marinho RC; Mendes-Rodrigues C; Balao F; Ortiz PL; Yamagishi-Costa J; Bonetti AM; Oliveira PE
    Am J Bot; 2014 Sep; 101(9):1456-65. PubMed ID: 25253706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A non-homogeneous model of chromosome-number evolution to reveal shifts in the transition patterns across the phylogeny.
    Shafir A; Halabi K; Escudero M; Mayrose I
    New Phytol; 2023 May; 238(4):1733-1744. PubMed ID: 36759331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Chromosome Counts Database (CCDB).
    Rice A; Mayrose I
    Methods Mol Biol; 2023; 2703():123-129. PubMed ID: 37646942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular phylogeny and chromosome evolution among the creeping herbaceous Oxalis species of sections Corniculatae and Ripariae (Oxalidaceae).
    Vaio M; Gardner A; Emshwiller E; Guerra M
    Mol Phylogenet Evol; 2013 Aug; 68(2):199-211. PubMed ID: 23562801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Evolution of Haploid Chromosome Numbers in the Sunflower Family.
    Mota L; Torices R; Loureiro J
    Genome Biol Evol; 2016 Dec; 8(11):3516-3528. PubMed ID: 27797951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.