BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 24710758)

  • 1. Application of a medium-energy collimator for I-131 imaging after ablation treatment of differentiated thyroid cancer.
    Kobayashi M; Wakabayashi H; Kayano D; Konishi T; Kojima H; Yoneyama H; Okuda K; Tsushima H; Onoguchi M; Kawai K; Kinuya S
    Ann Nucl Med; 2014 Jul; 28(6):551-8. PubMed ID: 24710758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prototype imaging protocols for monitoring the efficacy of iodine-131 ablation in differentiated thyroid cancer.
    Kobayashi M; Wakabayashi H; Kojima H; Konishi T; Okuda K; Yoneyama H; Kayano D; Tobisaka M; Tsushima H; Onoguchi M; Kawai K; Kinuya S
    Hell J Nucl Med; 2013; 16(3):175-80. PubMed ID: 24137580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A parallel-cone collimator for high-energy SPECT.
    Beijst C; Elschot M; Viergever MA; de Jong HW
    J Nucl Med; 2015 Mar; 56(3):476-82. PubMed ID: 25655627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Usefulness of low- and medium-energy collimators in 123I-MIBG myocardial scintigraphy].
    Sakashita R; Sugimoto K; Fukuya Y; Fujibuchi H; Ishida T; Higashimura K; Tsuchida T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2007 Feb; 63(2):241-6. PubMed ID: 17387245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma.
    Chen L; Luo Q; Shen Y; Yu Y; Yuan Z; Lu H; Zhu R
    J Nucl Med; 2008 Dec; 49(12):1952-7. PubMed ID: 18997044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of single-photon emission computed tomography/computed tomography for precise localization of metastases in patients with differentiated thyroid cancer.
    Wang H; Fu HL; Li JN; Zou RJ; Gu ZH; Wu JC
    Clin Imaging; 2009; 33(1):49-54. PubMed ID: 19135930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of novel whole-body high-resolution rodent SPECT (Linoview) based on direct acquisition of linogram projections.
    Walrand S; Jamar F; de Jong M; Pauwels S
    J Nucl Med; 2005 Nov; 46(11):1872-80. PubMed ID: 16269602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system.
    Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH
    J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collimator selection, acquisition speed, and visual assessment of 131I-tositumomab biodistribution in a phantom model.
    Tan HK; Wassenaar RW; Zeng W
    J Nucl Med Technol; 2006 Dec; 34(4):224-7. PubMed ID: 17146111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Appropriate collimators in a small animal SPECT scanner with CZT detector.
    Higaki Y; Kobayashi M; Uehara T; Hanaoka H; Arano Y; Kawai K
    Ann Nucl Med; 2013 Apr; 27(3):271-8. PubMed ID: 23288435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of low- and medium-energy collimators for SPECT imaging with iodine-123-labeled antibodies.
    Macey DJ; DeNardo GL; DeNardo SJ; Hines HH
    J Nucl Med; 1986 Sep; 27(9):1467-74. PubMed ID: 3489084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incremental value of diagnostic 131I SPECT/CT fusion imaging in the evaluation of differentiated thyroid carcinoma.
    Wong KK; Zarzhevsky N; Cahill JM; Frey KA; Avram AM
    AJR Am J Roentgenol; 2008 Dec; 191(6):1785-94. PubMed ID: 19020251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance evaluation of the eXplore speCZT preclinical imaging system.
    Matsunari I; Miyazaki Y; Kobayashi M; Nishi K; Mizutani A; Kawai K; Hayashi A; Komatsu R; Yonezawa S; Kinuya S
    Ann Nucl Med; 2014 Jun; 28(5):484-97. PubMed ID: 24610679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of different energy window subtraction methods to correct for scatter and downscatter in I-123 SPECT imaging.
    Lagerburg V; de Nijs R; Holm S; Svarer C
    Nucl Med Commun; 2012 Jul; 33(7):708-18. PubMed ID: 22513883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary, scatter, and penetration characterizations of parallel-hole and pinhole collimators for I-123 SPECT.
    Könik A; Auer B; De Beenhouwer J; Kalluri K; Zeraatkar N; Furenlid LR; King MA
    Phys Med Biol; 2019 Dec; 64(24):245001. PubMed ID: 31746783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of collimators in radium-223 imaging with channelized Hotelling observer: a simulation study.
    Takahashi A; Baba S; Sasaki M
    Ann Nucl Med; 2018 Dec; 32(10):649-657. PubMed ID: 30073570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Usefulness of 99mTc-pertechnetate single-photon emission computed tomography in remnant mass estimation of postsurgical patients of differentiated thyroid cancer during internal dosimetry.
    Nadig MR; Pant GS; Bal C
    Nucl Med Commun; 2008 Sep; 29(9):809-14. PubMed ID: 18677209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iodine-131 imaging using 284 keV photons with a small animal CZT-SPECT system dedicated to low-medium-energy photon detection.
    Kojima A; Gotoh K; Shimamoto M; Hasegawa K; Okada S
    Ann Nucl Med; 2016 Feb; 30(2):169-75. PubMed ID: 26395374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radioiodine remnant ablation in low-risk differentiated thyroid cancer.
    Saengsuda Y
    J Med Assoc Thai; 2013 May; 96(5):614-24. PubMed ID: 23745318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supplemental value of diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) technique to whole-body magnetic resonance imaging in detection of bone metastases from thyroid cancer.
    Sakurai Y; Kawai H; Iwano S; Ito S; Ogawa H; Naganawa S
    J Med Imaging Radiat Oncol; 2013 Jun; 57(3):297-305. PubMed ID: 23721138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.