These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24710828)

  • 21. Locally linear embedding (LLE) for MRI based Alzheimer's disease classification.
    Liu X; Tosun D; Weiner MW; Schuff N;
    Neuroimage; 2013 Dec; 83():148-57. PubMed ID: 23792982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporally Constrained Group Sparse Learning for Longitudinal Data Analysis in Alzheimer's Disease.
    Jie B; Liu M; Liu J; Zhang D; Shen D
    IEEE Trans Biomed Eng; 2017 Jan; 64(1):238-249. PubMed ID: 27093313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterogeneity of neuroanatomical patterns in prodromal Alzheimer's disease: links to cognition, progression and biomarkers.
    Dong A; Toledo JB; Honnorat N; Doshi J; Varol E; Sotiras A; Wolk D; Trojanowski JQ; Davatzikos C;
    Brain; 2017 Mar; 140(3):735-747. PubMed ID: 28003242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis.
    Lee YB; Lee J; Tak S; Lee K; Na DL; Seo SW; Jeong Y; Ye JC;
    Neuroimage; 2016 Jan; 125():1032-1045. PubMed ID: 26524138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Localized Sparse Code Gradient in Alzheimer's disease staging.
    Liu S; Cai W; Song Y; Pujol S; Kikinis R; Wen L; Feng DD
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5398-401. PubMed ID: 24110956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of white matter fiber parameters from compressed multiresolution diffusion MRI using sparse Bayesian learning.
    Pisharady PK; Sotiropoulos SN; Duarte-Carvajalino JM; Sapiro G; Lenglet C
    Neuroimage; 2018 Feb; 167():488-503. PubMed ID: 28669918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-rank sparse feature selection with incomplete labels for Alzheimer's disease progression prediction.
    Chen Z; Liu Y; Zhang Y; Jin R; Tao J; Chen L
    Comput Biol Med; 2022 Aug; 147():105705. PubMed ID: 35717935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predictive structural dynamic network analysis.
    Chen R; Herskovits EH;
    J Neurosci Methods; 2015 Apr; 245():58-63. PubMed ID: 25707306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual feature correlation guided multi-task learning for Alzheimer's disease prediction.
    Tang S; Cao P; Huang M; Liu X; Zaiane O
    Comput Biol Med; 2022 Jan; 140():105090. PubMed ID: 34875406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling disease progression via multi-task learning.
    Zhou J; Liu J; Narayan VA; Ye J;
    Neuroimage; 2013 Sep; 78():233-48. PubMed ID: 23583359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Bayesian group sparse multi-task regression model for imaging genetics.
    Greenlaw K; Szefer E; Graham J; Lesperance M; Nathoo FS;
    Bioinformatics; 2017 Aug; 33(16):2513-2522. PubMed ID: 28419235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: a longitudinal study of the ADNI cohort.
    Du L; Liu K; Zhu L; Yao X; Risacher SL; Guo L; Saykin AJ; Shen L;
    Bioinformatics; 2019 Jul; 35(14):i474-i483. PubMed ID: 31510645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
    Spasov S; Passamonti L; Duggento A; Liò P; Toschi N;
    Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling longitudinal imaging biomarkers with parametric Bayesian multi-task learning.
    Aksman LM; Scelsi MA; Marquand AF; Alexander DC; Ourselin S; Altmann A;
    Hum Brain Mapp; 2019 Sep; 40(13):3982-4000. PubMed ID: 31168892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Region-of-Interest based sparse feature learning method for Alzheimer's disease identification.
    Wang L; Liu Y; Zeng X; Cheng H; Wang Z; Wang Q
    Comput Methods Programs Biomed; 2020 Apr; 187():105290. PubMed ID: 31927305
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Canonical feature selection for joint regression and multi-class identification in Alzheimer's disease diagnosis.
    Zhu X; Suk HI; Lee SW; Shen D
    Brain Imaging Behav; 2016 Sep; 10(3):818-28. PubMed ID: 26254746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects.
    Moradi E; Pepe A; Gaser C; Huttunen H; Tohka J;
    Neuroimage; 2015 Jan; 104():398-412. PubMed ID: 25312773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alzheimer's disease diagnosis framework from incomplete multimodal data using convolutional neural networks.
    Abdelaziz M; Wang T; Elazab A
    J Biomed Inform; 2021 Sep; 121():103863. PubMed ID: 34229061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomarker Extraction Based on Subspace Learning for the Prediction of Mild Cognitive Impairment Conversion.
    Li Y; Fang Y; Wang J; Zhang H; Hu B
    Biomed Res Int; 2021; 2021():5531940. PubMed ID: 34513992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temporally-constrained group sparse learning for longitudinal data analysis.
    Zhang D; Liu J; Shen D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):264-71. PubMed ID: 23286139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.