BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24711346)

  • 21. Controlling fibroblast proliferation with dimensionality-specific response by stiffness of injectable gelatin hydrogels.
    Wang LS; Chung JE; Kurisawa M
    J Biomater Sci Polym Ed; 2012; 23(14):1793-806. PubMed ID: 21943785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration.
    DeLong SA; Moon JJ; West JL
    Biomaterials; 2005 Jun; 26(16):3227-34. PubMed ID: 15603817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic tissue engineering scaffolds with stimuli-responsive macroporosity formation.
    Han LH; Lai JH; Yu S; Yang F
    Biomaterials; 2013 Jun; 34(17):4251-8. PubMed ID: 23489920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell immobilization in gelatin-hydroxyphenylpropionic acid hydrogel fibers.
    Hu M; Kurisawa M; Deng R; Teo CM; Schumacher A; Thong YX; Wang L; Schumacher KM; Ying JY
    Biomaterials; 2009 Jul; 30(21):3523-31. PubMed ID: 19328545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. User-friendly 3D bioassays with cell-containing hydrogel modules: narrowing the gap between microfluidic bioassays and clinical end-users' needs.
    Lee DH; Bae CY; Kwon S; Park JK
    Lab Chip; 2015 Jun; 15(11):2379-87. PubMed ID: 25857752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment.
    Toh WS; Lim TC; Kurisawa M; Spector M
    Biomaterials; 2012 May; 33(15):3835-45. PubMed ID: 22369963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties.
    Wang LS; Du C; Toh WS; Wan AC; Gao SJ; Kurisawa M
    Biomaterials; 2014 Feb; 35(7):2207-17. PubMed ID: 24333028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of large perfusable macroporous cell-laden hydrogel scaffolds using microbial transglutaminase.
    Chen PY; Yang KC; Wu CC; Yu JH; Lin FH; Sun JS
    Acta Biomater; 2014 Feb; 10(2):912-20. PubMed ID: 24262131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Porous hydrogel of wool keratin prepared by a novel method: an extraction with guanidine/2-mercaptoethanol solution followed by a dialysis.
    Ozaki Y; Takagi Y; Mori H; Hara M
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():146-54. PubMed ID: 25063104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ generation of cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching.
    Sokic S; Christenson M; Larson J; Papavasiliou G
    Macromol Biosci; 2014 May; 14(5):731-9. PubMed ID: 24443002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis.
    Saadi W; Wang SJ; Lin F; Jeon NL
    Biomed Microdevices; 2006 Jun; 8(2):109-18. PubMed ID: 16688570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photo-crosslinkable hydrogel-based 3D microfluidic culture device.
    Lee Y; Lee JM; Bae PK; Chung IY; Chung BH; Chung BG
    Electrophoresis; 2015 Apr; 36(7-8):994-1001. PubMed ID: 25641332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering.
    Hammer J; Han LH; Tong X; Yang F
    Tissue Eng Part C Methods; 2014 Feb; 20(2):169-76. PubMed ID: 23745610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip.
    Lei KF; Wu MH; Hsu CW; Chen YD
    Biosens Bioelectron; 2014 Jan; 51():16-21. PubMed ID: 23920091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogel with Aligned and Tunable Pore Via "Hot Ice" Template Applies as Bioscaffold.
    He H; Liu M; Wei J; Chen P; Wang S; Wang Q
    Adv Healthc Mater; 2016 Mar; 5(6):648-52, 626. PubMed ID: 26829493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrodynamic spinning of hydrogel fibers.
    Hu M; Deng R; Schumacher KM; Kurisawa M; Ye H; Purnamawati K; Ying JY
    Biomaterials; 2010 Feb; 31(5):863-9. PubMed ID: 19878994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On-chip porous microgel generation for microfluidic enhanced VEGF detection.
    Zhao Z; Al-Ameen MA; Duan K; Ghosh G; Lo JF
    Biosens Bioelectron; 2015 Dec; 74():305-12. PubMed ID: 26148675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A gel-free 3D microfluidic cell culture system.
    Ong SM; Zhang C; Toh YC; Kim SH; Foo HL; Tan CH; van Noort D; Park S; Yu H
    Biomaterials; 2008 Aug; 29(22):3237-44. PubMed ID: 18455231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological applications of microfluidic gradient devices.
    Kim S; Kim HJ; Jeon NL
    Integr Biol (Camb); 2010 Nov; 2(11-12):584-603. PubMed ID: 20957276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.